-->

Краткий курс логики: Искусство правильного мышления

На нашем литературном портале можно бесплатно читать книгу Краткий курс логики: Искусство правильного мышления, Гусев Дмитрий Алексеевич-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Краткий курс логики: Искусство правильного мышления
Название: Краткий курс логики: Искусство правильного мышления
Дата добавления: 15 январь 2020
Количество просмотров: 259
Читать онлайн

Краткий курс логики: Искусство правильного мышления читать книгу онлайн

Краткий курс логики: Искусство правильного мышления - читать бесплатно онлайн , автор Гусев Дмитрий Алексеевич

Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.

Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 49 ВПЕРЕД
Перейти на страницу:

1.4. Ограничение и обобщение понятия

Видовые и родовые понятия тесно связаны между собой логическими операциями ограничения и обобщения.

Ограничение понятия – это логическая операция перехода от родового понятия к видовому с помощью прибавления к его содержанию какого-либо признака (или нескольких признаков).

Вспомним об обратном отношении между объёмом и содержанием понятия: чем больше объём, тем меньше содержание, и наоборот. Ограничение понятия, или переход от родового понятия к видовому – это уменьшение его объёма, а значит – увеличение содержания. Вот почему при добавлении каких-либо признаков к содержанию понятия автоматически уменьшается его объём. Например, если к содержанию понятия «физический прибор» (Ф. п.) прибавить признак «измерять напряжение электрического тока», то оно превратится в понятие «вольтметр» (В), которое будет видовым по отношению к исходному родовому понятию «физический прибор» (рис. 10).

Краткий курс логики: Искусство правильного мышления - _10.png

Так же, если к содержанию понятия «геометрическая фигура» (Г. ф.) прибавить признак «иметь равные стороны и прямые углы», то оно превратится в понятие «квадрат» (К), которое будет видовым по отношению к исходному родовому понятию «геометрическая фигура» (рис. 11).

Краткий курс логики: Искусство правильного мышления - _11.png

Обобщение понятия – это логическая операция перехода от видового понятия к родовому с помощью исключения из его содержания какого-либо признака (или нескольких признаков). Содержание понятия, лишённое каких-то признаков, уменьшается, но при этом автоматически увеличивается объём понятия, которое из видового становится родовым или обобщается. Например, если от содержания понятия «биология» (Б) отбросить признак «изучать различные формы жизни», то оно превратится в понятие «наука» (Н), которое будет родовым по отношению к исходному видовому понятию «биология» (рис. 12).

Краткий курс логики: Искусство правильного мышления - _12.png

Так же, если от содержания понятия «атом водорода» (А. в.) отбросить признак «иметь один электрон», то оно превратится в понятие «атом химического элемента» (А. х. э.), которое будет родовым по отношению к исходному видовому понятию «атом водорода» (рис. 13).

Краткий курс логики: Искусство правильного мышления - _13.png

Ограничения и обобщения понятий складываются в логические цепочки, в которых каждое понятие (за исключением начального и конечного) является видовым по отношению к одному соседнему понятию и родовым по отношению к другому. Например, если последовательно обобщать понятие «Солнце», то получится следующая цепочка: Солнцезвезданебесное тело→ → физическое телоформа материи. В этой цепочке понятие «звезда» является родовым по отношению к понятию «Солнце», но видовым по отношению к понятию «небесное тело»; так же понятие «небесное тело» является родовым по отношению к понятию «звезда», но видовым по отношению к понятию «физическое тело» и т. д. Движение по нашей цепочке от понятия «Солнце» к понятию «форма материи» представляет собой серию последовательных обобщений, а движение в обратном направлении – серию ограничений. Если изобразить отношения между понятиями из указанной цепочки на схеме Эйлера, то получатся круги, последовательно располагающиеся один в другом: самый маленький будет обозначать понятие «Солнце», а самый большой – «форма материи».

Пределом цепочки ограничения любого понятия всегда будет какое-либо единичное понятие (см. раздел 1.1.), а пределом цепочки обобщения, как правило, будет какое-либо широкое, философское понятие, например: объект мироздания, форма материи или форма бытия.

Наиболее частые ошибки, которые допускают при ограничении и обобщении понятий, заключаются в том, что вместо вида для какого-то рода называют часть из некого целого, и вместо рода для какого-то вида называют целое по отношению к какой-либо части. Например, в качестве ограничения понятия «цветок» предлагают понятие «стебель». Действительно, стебель – это часть цветка, но ограничить понятие – значит подобрать не часть для целого, а вид для рода. Следовательно, правильным ограничением понятия «цветок» будет понятие «ромашка», или «тюльпан», или «хризантема» и т. п. В качестве обобщения понятия «дерево» нередко предлагают понятие «лес». Конечно же, лес является неким целым по отношению к деревьям, из которых он состоит, но обобщить понятие – значит подобрать не целое для части, а род для вида. Следовательно, правильным обобщением понятия «дерево» будет понятие «растение», или «объект флоры», или «живой организм» и т. п.

Итак, почти любое понятие (за исключением единичных и широких, философских) можно как ограничить, так и обобщить. Другими словами, подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия «человек» (Ч) будет понятие «спортсмен» (С) или «писатель», или «мужчина», или «молодой человек» и т. п., а его обобщением будет понятие «живое существо» (Ж. с.) (рис. 14).

Краткий курс логики: Искусство правильного мышления - _14.png
Проверьте себя:

1. Что такое ограничение понятия?

2. Что представляет собой логическая операция обобщения понятия?

3. Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений?

4. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом.

5. Всякое ли понятие можно подвергнуть ограничению или обобщению? Какие понятия не поддаются этим логическим операциям?

6. Подберите десять любых понятий и проделайте с ними ограничение и обобщение, т. е. подберите для каждого как видовое, так и родовое понятие, иллюстрируя эти операции схемами Эйлера.

1.5. Операция определения понятия

Определение понятия – это логическая операция, которая раскрывает содержание понятия.

Определения бывают явными и неявными.

Явное определение непосредственно раскрывает содержание понятия, даёт прямой ответ на вопрос, чем является объект, который оно обозначает. Например: «Термометр – это физический прибор, предназначенный для измерения температуры», – явное определение.

Неявное(контекстуальное) определение раскрывает содержание понятия не прямо, а косвенно, с помощью контекста, в котором это понятие употребляется. Например, из следующей фразы: «Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1 000 °C», – косвенно следует ответ на вопрос: «Что такое термометр?» – вытекает неявное определение этого понятия. Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдёт именно о них.

Определения также бывают реальными и номинальными.

Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, т. е. они посвящены объектам. Например:

«Термометр – это физический прибор, предназначенный для измерения температуры» – реальное определение.

Номинальное (от лат. nomen – имя) раскрывает значение термина, которым выражено какое-либо понятие, т. е они посвящены терминам (словам). Например: «Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры», – номинальное определение.

Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути.

1 2 3 4 5 6 7 8 9 10 ... 49 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название