Радость познания
Радость познания читать книгу онлайн
Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.
Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.
Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Сокрушительные атомы
Понимаете, то, над чем я работаю в физике именно сейчас, — это очень важная задача, в которой мы столкнулись с трудностями; попробую описать ее. Вы знаете, что все состоит из атомов, мы поняли это давно, и многие знают, что атом состоит из ядра и электронов, движущихся вокруг него. Поведение внешней части, электронов, теперь полностью известно, законы для них хорошо изучены, насколько их можно трактовать в рамках квантовой электродинамики, о ней я вам уже рассказывал. И после того как все это раскрутили, оставался вопрос, как работает ядро, как взаимодействуют в нем частицы, как они удерживаются вместе? Одним из побочных продуктов ядерной физики оказалось открытие деления ядра и создание атомной бомбы. Но исследование сил, которые удерживают ядерные частицы в ядре, — это давно существующая сложная задача. Во-первых, считается, что силы возникают благодаря внутреннему обмену частицами определенного сорта, такую модель придумал Юкава, а частицы назвали пионами. Предположим, вы ударяете протонами по ядру — протон является одной из частиц, входящих в состав ядра, — протоны будут выбивать пионы, и они будут, конечно, вырываться наружу, испускаться.
Испускаются не только пионы, но и другие частицы — и мы придумываем им имена, пока они не иссякнут, — каоны и сигма, лямбда и прочие. Все они теперь называются адронами, и, если увеличивать энергию реакции, вы получите все больше и больше частиц, до сотен различных частиц; проблема, в период от 1940–1950 годов и до наших дней, без сомнения, состояла в том, чтобы найти заложенную в их основе структуру. Казалось бы, среди этих частиц должно существовать множество интереснейших связей и структур, пока теория не нашла объяснения их строения, — все эти частицы состоят из чего-то еще — и это что-то мы назвали кварками. Например, три кварка образуют протон, а протон — одна из частиц ядра; другая частица ядра — нейтрон. Существуют несколько кварков — сначала фактически были нужны только три кварка, чтобы объяснить все разнообразие сотен частиц, эти три различных кварка назвали кварками u-типа, d-типа и s-типа. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из двух d-кварков и одного u-кварка. Если бы кварки двигались внутри различными путями, они представляли бы некоторую другую частицу. Тогда возникает вопрос: каково точное поведение кварков и что удерживает их вместе? Теория предположительно очень проста, очень близка аналогия с квантовой электродинамикой — не полностью, но очень похожа — кварки подобны электрону, а частицы, названные глюонами, которые курсируют между кварками, заставляя их притягиваться друг к другу, подобны фотону, который тоже путешествует между электронами, создавая электромагнитные силы. И математика здесь очень похожа, но содержит несколько немного отличающихся членов. Разгаданное различие в форме уравнений привело к разгадке принципов такой красоты и простоты, что их никак нельзя считать случайными, они очень и очень определенные. Пока не выяснено, сколько существует различных видов кварков [5].
Тут есть кардинальное отличие от электродинамики, в которой два электрона могут расходиться сколь угодно далеко, а когда они далеки друг от друга, то силы между ними, в сущности, становятся совсем ничтожными. Если бы это было справедливо для кварков, то мы ожидали бы, что, когда достаточно сильно ударяешь по какой-либо ядерной частице (адрону), должны испускаться кварки. Однако вместо этого, когда проводятся эксперименты при энергии, достаточной для вылета кварков, вы обнаруживаете большую струю — иначе говоря, много частиц, идущих в том же направлении, что и первоначальные адроны, но в струе нет кварков — и это требование теории: когда вылетают кварки, они образуют что-то вроде новых пар кварков, они входят в состав маленьких групп кварков, представляющих адроны.
Вопрос, почему существуют такие отличия от электродинамики, как работает это малое различие в математических формулах, эти малые члены, которые незначительно изменяют уравнения, но приводят к таким различающимся эффектам, к полностью иным эффектам? То, что происходит в реальности, было действительно удивительным для большинства ученых, и первое, что приходит в голову, что теория неправильна. Но чем больше ею занимались, тем яснее становилось, что, по-видимому, виной всему оказываются именно эти дополнительные члены, приводящие к таким различающимся эффектам. Теперь мы полагаем, что физика претерпевает кардинальные изменения. Мы имеем теорию, полную и вполне определенную теорию всех этих адронов, и у нас есть огромное количество экспериментальных данных с кучей подробностей — почему же мы не можем немедленно проверить теорию, обнаружить, правильна она или нет? Потому что нам нужно вычислить следствия теории. Если теория верна, что должно произойти и как это произойдет? В данный момент трудность заключается в первом шаге. Математика, необходимая для разгадывания следствий теории, в настоящее время непреодолимо сложна. В настоящее время — да! И поэтому очевидно, какова моя задача. Моя задача — попытаться разработать способ доведения теории до числа, тщательно ее проверить, не просто качественно, а увидеть, может ли она привести к правильным результатам.
Я потратил несколько лет, пытаясь изобрести математические трюки, которые позволили бы мне решить уравнения, но я, в общем, ничего не добился, и тогда я решил, что для начала должен представить себе, как может выглядеть решение. Трудно объяснить это доходчиво, но перед тем как оценить идею количественно, я должен уяснить качественный принцип, как работает явление. Иначе говоря, люди не понимали даже, как работает идея в грубом приближении. Я работал в последнее время, в последние год-два, над осмыслением того, как приблизительно работает теория, пока не количественно, надеясь, что в будущем это приближенное понимание сможет перерасти в точный математический аппарат, способ или алгоритм для перехода от теории к частицам. Понимаете, мы находимся в забавном положении: не то чтобы мы ищем теорию, мы ее получили — очень хорошего кандидата на роль теории, — мы находимся на той ступени, когда нам необходимо сравнить теорию с экспериментом, увидеть, какие появятся следствия и проверить исходную теорию. Мы зациклились на следствиях; тем не менее моя цель, мое страстное желание — понять, смогу ли я разработать адекватный способ решения задачи, чтобы понять, каковы следствия этой теории (СМЕЕТСЯ). Это один из видов сумасшествия — иметь теорию, из которой не можешь найти следствий… Я не могу этого перенести, я должен все понять. Может быть, когда-нибудь…
«Пусть это сделает Джордж»
Чтобы сделать настоящую, действительно хорошую работу в физике, абсолютно необходимо иметь много времени, чтобы запомнить те смутные и труднодоступные идеи, которые приходят тебе в голову, — это очень похоже на то, как строится карточный домик, где каждая карта стоит непрочно, и если вы забудете про одну из них, вся конструкция развалится. Вы не знаете, как это построить, и выстраиваете карты снова и снова — и если вы прерветесь, это все равно что забыть половину идей, то есть как карты соединялись прежде, чтобы выстроилась идея, — ваши карты символизируют различные части идеи. Главное, вы соединяете вместе головоломку, и получается башня, но легко ошибиться, нужна огромная концентрация, то есть нужна масса времени для обдумывания, — правда, если вы работаете в административной сфере, вам не нужно так много времени. Если кто-нибудь попросит меня присутствовать на заседании приемной комиссии — ну уж нет, за это я не несу ответственности — и мне плевать на студентов — конечно, мне вовсе не наплевать на студентов, но я знаю, что кто-нибудь еще сделает это за меня, — я придерживаюсь точки зрения: «Пусть это сделает Джордж». Понимаете, вы не обязаны придерживаться этой точки зрения, поскольку она не совсем верна, но я поступаю так, поскольку мне нравится заниматься физикой, и я все-таки хочу кое-что сделать, поэтому я и эгоистичен. Я хочу заниматься физикой.