Парадоксы науки
Парадоксы науки читать книгу онлайн
Наука — одно из высших проявлений человеческих возможностей, показатель того, на что вообще способен наш интеллект. Мы люди, и человеческое в нас — неистребимая радость познания. Она влечет все дальше вперед по неизведанным дорогам открытий.
Книга рассказывает о парадоксальных состояниях науки, возникающих в ситуации когда обнаруживается неудовольствие старым знанием, а новое еще не настолько доказало свою жизненность, чтобы прочно войти в сознание большинства. Освещены приемы, которые привлекаются учеными для построения парадоксальных теорий, дается расшифровка некоторых механизмов творчества.
Автор раскрывает назначение парадокса как источника новых приобретений в знаниях, его роль в выдвижении плодотворных идей. Парадоксы поучительны. Каждый из них повествует о каких-то неожиданных поворотах науки в постановке проблем, методах решения, судьбах ее открытий.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А теперь рассмотрим эти выводы и рекомендации в их конкретных проявлениях.
Чтобы взглянуть на проблему другими глазами, часто используют, хотя и не всегда осознанно, такой прием: пытаются представить знакомое незнакомым, а незнакомое, наоборот, знакомым. Необычно? Конечно.
Зато это помогает отойти от проблемы на дистанцию: вдруг удастся обнаружить в ней новые грани.
Дело в том, что творческий подход, как мы уже не однажды видели, характеризуется способностью исследователя поставить решаемую задачу независимо от той конкретной области знания, где эта задача бозникла, способностью отвлечься от специфического содержания проблемы и применить для поиска ответов методы других дисциплин.
К сожалению, исследователи зачастую стремятся обойтись малыми силами и привлекают подходящие методы «на стороне», то есть попросту берут у соседей готовое решение, модифицируя его для своей проблемы. Однако, хотя такой прием имеет познавательную ценность, он недостаточно продуктивен, поскольку годится для решения только близких по типу задач.
Гораздо плодотворнее «работает» то знание, которое привлечено из далеких, порой даже чуждых наук. Его применение кажется поначалу странным, парадоксальным, зато дает неоспоримый эффект.
Мы расскажем о некоторых фактах из истории науки, поясняющих нашу мысль.
Характерен, например, опыт изобретения швейной машины французом Э. Гау в 1845 году. Надо сказать, что такую машину намеревались создать давно, над ней бились еще в начале XVIII века. Причину неудач следует, по-видимому, искать в том, что шли путем простого переноса приемов ручной работы на механизм.
Вот он, прием подобия! Пытались воспроизвести операции, которые совершает рука человека в процессе шитья.
Э. Гау же подошел к задаче как дилетант. Он начисто «забыл», как вообще шьют. Изобретатель решил, что ручной шов не годится, и остановился на операциях, которые совершает… ткацкий челнок. Челнок к шитью? Это выглядело по меньшей мере чудачеством: ведь челнок не шьет. Однако Э. Гау удачно использовал действие возвратного движения, которое выполняется челноком. Так неожиданно нашла реализацию давно задуманная идея.
Аналогично было осуществлено конструирование молотильной машины. И здесь изобретатели пытались вначале копировать ручную молотьбу. Например, прилаживали к вертящейся оси цепы наподобие крестьянской молотьбы цепами. Решение пришло совсем с другой стороны. Когда применили вращающийся барабан с зубцами, результат оказался поразительным.
Неудивительно, что многие изобретатели и появились со стороны, ибо смогли взглянуть на проблемную ситуацию чужими глазами, были свободны от груза предвзятых методов, навязываемых специальными знаниями и методами.
Немало плодотворных решений заимствовано у живой природы. Классический пример: висячие мосты Обычно мосты строили на опорах. Но вот понадобилось соорудить переход через глубокую впадину. Поставить опору было невозможно. Как же быть? Мучительно искал ответа инженер С. Браун. Как-то раз, лежа под деревом, он обратил внимание на паутину. Стоп! А почему бы не возвести мост по принципу перебрасывания паутины между деревьями? Тут же родился набросок еще небывалого в практике строения моста.
Интересно, что паутина еще однажды послужила человеку. На этот раз уже в наши дни при возведении зданий. Обратили внимание на то, что при сильном ветре, который сметает на своем пути тяжелые предметы, ломает вегви деревьев, паутина остается невредимой. Этим заинтересовались советские специалисты и решили по образцам такого «чуда» построить крышу здания. Конструкция оказалась не только прочной, но и дешевой, что позволило сэкономить около пятой части материалов.
По «патентам» природы была создана Н. Брюннелем машина для рытья туннелей. Она воспроизводила движения корабельного древоточца. Это небольшой червь, покрытый твердой цилиндрической пластинкой.
Впрочем, черви тоже не один раз оказали услугу изобретателям. Наблюдения за тем, как они прокладывают ходы в дереве, помогли решить проблему одной подводной конструкции. Дело в том, что червь по мере продвижения создает для себя трубку. Это и подсказало идею кессона: так называют открытый снизу ящик для образования под водой свободного от нее пространства. Кессон позволяет сооружать подводные основания для мостов, плотин и т. п.
Родилась специальная наука — бионика. С ее помощью стремятся выведать у природы, чтобы воплотить в технике, и многие другие тайны: высокие скорости передвижения дельфинов, способность рыб и птиц ориентироваться в пространстве, кита — справляться со злокачественными опухолями (последние обволакиваются капсулой, препятствующей их контакту с окружающими клетками) и др.
Будем помнить, однако, что и здесь нас может подстерегать опасность узкой специализации. Прямые заимствования у природы не всегда идут впрок. Не имело успеха, например, конструирование летательных аппаратов с машущими крыльями, устройств, передвигающихся на ходулях, механических ногах и прочее. Решения были получены как раз на пути отказа от прямых подражаний. В частности, при создании механизмов передвижения использовали колесо, не имеющее прямого аналога в живой природе.
Вообще говоря, такие плодотворные подсказки могут приходить со всех сторон. Мы коснулись области изобретательства. Если взять научное творчество в целом, то здесь поле приложения «посторонним» идеям, по существу, безгранично, а сам характер таких приложений порой весьма причудлив; скажем, влияния, идущие из сферы литературы, искусства, философии.
Здесь не время подробно развивать эту тему. Отметим лишь два факта.
Стало достоянием широкой известности одно замечание А. Эйнштейна. Он признался однажды, что на него производил сильнейшее впечатление русский писатель Ф. Достоевский, который дал ему как исследователю больше, чем многие естествоиспытатели и математики, больше, чем, например, даже К. Гаусс.
Можно догадываться, что Ф. Достоевский оказал воздействие именно необычной манерой, с какой он распоряжался судьбами своих героев. Художник наделял их столь своеобразным характером и образом мысли, ставил в такие ситуации, что все казалось нелепым с точки зрения «нормального» романа и здравого смысла. Это ведь не математик, а писатель Ф. Достоевский еще в 70-х годах прошлого столетия выразил недовольство по поводу маленького эвклидова ума, связанного лишь с тремя измерениями.
Не таким ли своеобразным и непокорным с точки зрения господствующей науки характером отличались и воззрения самого А. Эйнштейна?
Немало нужных идей пришло в естествознание и от философии. В предыдущей главе нам уже удалось, надеемся не в последний раз в этой книге, сказать о ее роли.
«АКАДЕМИКОВ ДОСТОИНСТВО ГЛАВНОЕ»
Но если на результатах поиска могут сказаться влияния, идущие от самых различных областей знания, то, очевидно, исследователю полезно овладеть возможно более широким кругом достижений науки и культуры. Не случайно выявляется следующее обстоятельство.
История науки показывает, что чем крупнее ученый, тем более разнообразны его интересы. Порой приходится лишь удивляться размаху его занятий и профессий. Такими, по выражению Ф. Энгельса, «титанами мысли» по многогранности и учености были Н. Коперник и Л. да Винчи в период становления науки, Г. Лейбниц, И. Кеплер, X. Гюйгенс — в пору ее возмужания, А. Эйнштейн, М. Борн, С. Вавилов — в наше время.
Многогранностью научных запросов отличались многие русские ученые. Особенно выделяется М. Ломоносов. Прежде всего он прославил себя как физик и химик. Широко известны его исследования по электричеству, труды в области физической химии, одним из основателей которой он является. Как уже отмечалось, М. Ломоносов — один из «виновников» установления закона сохранения и превращения вещества и энергии.
Геологи знают его как автора работы «О слоях Земли», интересной работы и не единственной, вышедшей из-под пера великого ученого. Металлурги узнают в нем коллегу, написавшего «Первые основания металлургии» — книгу, которая была действительно первой во времени да и по значимости тоже. В географии за ним числятся «Краткие описания разных путешествий по северным морям и показание возможного проходу Сибирским океаном в Восточную Индию». Обратите внимание, насколько он, предсказав Северный морской путь, шел впереди эпохи в своих «Кратких описаниях» отнюдь не с кратким названием. Выдающиеся результаты получены им в области оптики, а также астрономии. Достаточно назвать хотя бы одно — открытие атмосферы Венеры.