Загадки мироздания
Загадки мироздания читать книгу онлайн
Знаменитый писатель-фантаст, ученый с мировым именем, великий популяризатор науки, автор множества научно-популярных, фантастических, детективных, исторических и юмористических изданий приглашает вас в мир загадок прошлого, настоящего и будущего.
В этой книге Азимов рассказывает об удивительных явлениях и фактах — известных и малоизвестных, открытиях, ошибках и гениальных догадках ученых. Просто он рассказывает о сложном — белках и ДНК, гормонах и ферментах, лазерах и космических кораблях, теории относительности и истоках Вселенной. Каким должен быть марсианин? Что изменится в повседневной жизни американца 1990 года? Какие проблемы будут угрожать нашей планете и цивилизации в ближайшие века? Возможно ли вернуться назад во времени? Как будет выглядеть всемирная выставка 2014 года? Сможет ли человечество дотянуться до звезд?…
Он не верит в инопланетян в летающих тарелках, но предполагает, какими будут колонии на Луне, когда станут осваивать Марс и какова во всем этом роль научной фантастики.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но на холодных планетах кислорода в атмосфере нет. Вместо него есть водород. Возможно, что пищей «аммиачных» существ смогут служить сложные молекулы, богатые углеродом и кислородом, — молекулы такого типа были бы слишком нестабильны, чтобы существовать в условиях земного диапазона температур. Тогда атомы кислорода, содержащиеся в пище, могли бы вступать в соединение с атомами водорода, получаемыми из атмосферы. Энергия при этом высвобождалась бы точно таким же образом, как и при нашем обмене веществ.
Даже если планета слишком холодна для того, чтобы аммиак на ней не замерзал (а именно такие температуры властвуют на самых далеких планетах нашей Солнечной системы, Уране и Нептуне), это не полностью отнимает у нее возможность стать колыбелью жизни. Остается еще метан, представляющий собой здесь, на Земле, основной компонент так называемого «природного газа», используемого для приготовления пищи и обогрева жилья. Метан еще тяжелее расплавить, чем аммиак; он становится жидким только при температурах ниже -184 °С.
Однако химические свойства метана полностью отличаются от свойств воды или аммиака. В отличие от двух последних жидкостей обычные белки не растворяются в метане. Зато растворяются некоторые жирные вещества, и, возможно, на очень холодных планетах место белков могут занять сложные жиры. Такие сложные жиры существуют на самом деле, и некоторые их них по сложности не уступают белкам; так что нет ничего принципиально невозможного в зарождении метаново-жировой жизни.
А что же планеты, наоборот, горячие, более близкие к Солнцу? Они должны быть маленькими и не иметь атмосферы в обычном понимании. На них могут лишь в небольших количествах удерживаться малопригодные для обмена веществ газы, например, газообразная сера или ртуть. Воды на таких планетах точно нет; если даже когда-то она и была, то давным-давно выкипела.
Возможно, жизнь может зародиться на основе веществ, которые имеют при высоких температурах жидкую форму. Сера, по химическим свойствам несколько напоминающая кислород, находится в жидком состоянии при температурах от 112°С до 437°С. Возможна ли жизнь на серной основе?
Если и да, то белковой она быть не может. Белки при таких высоких температурах совершенно нестабильны. Обычные белки, как и все остальные сложные молекулы живой ткани, в том числе — правящие бал нуклеиновые кислоты, состоят по большей части из атомов углерода и водорода с небольшими вкраплениями кислорода, азота, серы и фосфора.
Иными словами, молекулы наших организмов — производные от углеводов.
Однако во время Второй мировой войны в ходе работы над созданием атомной бомбы химики обнаружили, что атомы водорода в такого рода молекулах можно заменить атомами фтора (фтор — это очень едкий ядовитый газ). Получающиеся в результате фтороуглеводные соединения имеют те же свойства, что и углеводы, но являются гораздо более стабильными. Сложные химические вещества, состоящие из производных фтороуглеводных соединений, слишком стабильны для обеспечения гибкости, необходимой для живой ткани, но при температурах жидкой серы они могут стать в достаточной степени нестабильными. «Могут», потому что очень трудно судить по простым молекулам определенного типа, какими свойствами будут обладать сложные молекулы того же типа. Вот пример: искусственно синтезированная человеком молекула нейлона по строению сходна с молекулой белка. Если бы стабильный и инертный нейлон был единственным веществом своего типа, доступным для анализа, то кто мог бы предсказать на основе его изучения существование сложных, нестабильных белковых молекул со всей их гибкостью и химической активностью?
Есть еще один вид молекул, способных образовывать сложные структуры, возможно стабильные при высоких температурах. Речь идет о кремниевых соединениях. Они состоят в основном из цепочек атомов кремния и кислорода, в качестве примера можно привести земные камни. Однако к этим цепочкам могут присоединяться и углеводные (или, возможно, фтороводородные) группы, придавая молекулам необходимую гибкость.
Такого рода кремниевые соединения были разработаны в лабораториях здесь, на Земле, за последние несколько десятков лет. Помимо прочего, твердые кремниевые соединения служат в качестве искусственной резины, а жидкие — в качестве гидравлических жидкостей. Так что можно представить себе горячие планеты населенными живущими в лужах жидкой серы существами с резиновыми тканями, по жилам которых текут гидравлические жидкости.
На горячих планетах живым существам не обязательно использовать химические реакции для получения энергии. Имея под рукой солнце, размером и яркостью десятикратно превышающее наше, эти существа, будь они хоть фтороуглеродными, хоть кремниевыми, смогут впитывать солнечную энергию напрямую.
Встретимся ли мы в будущем с чем-либо подобным на самом деле?
Даже если нам никогда не суждено добраться до других звезд, то долететь до других планет нашей Солнечной системы смогут уже наши внуки. А все эти планеты, за исключением Марса с, может быть, проживающими на нем простейшими растениями, совершенно не похожи на нашу Землю. Что обнаружится на такой горячей планете, как Меркурий? Ничего, кроме мертвого камня и дымящейся серы? А на холодных мирах, таких, как крупнейший спутник Сатурна Титан? Ничего, кроме твердокаменного льда и леденящего метанового ветра?
Нельзя быть уверенными до конца.
Мы уже приняли на веру одно важное допущение, поверив, что Земля может быть не единственным населенным миром во Вселенной, а может быть — и не единственным миром, населенным разумными существами. Может быть, когда-нибудь нам придется еще больше расширить горизонты сознания и поверить, что и с химической точки зрения наш вариант развития не единственный?
Если это действительно так, то в конце концов мы можем с изумлением прийти к возможности изучать как фтороводородный или кремниевый метаболизм горячих, так и аммиачный или метановый метаболизм холодных, а самих себя типировать как пример белково-водных умеренных.
Почему бы и нет? Ведь как в науке, так и во всех остальных областях деятельности человека, именно жажда новых открытий заставляет что-то предпринимать!
Глава 22
ЕСТЬ ЗДЕСЬ КТО-НИБУДЬ?
Так говорил Лоренцо в шекспировском «Венецианском купце», безуспешно стараясь расслышать музыку сфер.
Со времен Шекспира люди частично преодолели ограничения, накладываемые «грязной оболочкой праха», с помощью новых инструментов — телескопов, спектроскопов, фотоаппаратов и волновых усилителей. Сейчас мы способны в буквальном смысле слышать музыку сфер, поскольку Вселенная кишит радиоволнами. Если их перевести в звуковые, получится всего лишь грубый треск помех, но для очарованных астрономов этот треск кажется поистине ангельской музыкой.
Из некоторых невидимых точек на небосводе приходят волны непохожие на другие. Две такие точки были впервые отмечены в 1960 году и позже включены в каталог активных источников радиоволн, составленный в Калифорнийском технологическом университете. Согласно номерам этого каталога, два вышеупомянутых источника получили названия СТА-21 и СТА-102. В 1963 году англоамериканская группа астрономов отметила эти источники как заслуживающие отдельного изучения, а в октябре 1964 года ведущий советский астроном Николай Кардашев занялся этим изучением вплотную.