Электромеханика в космосе

На нашем литературном портале можно бесплатно читать книгу Электромеханика в космосе, Иосифьян Андраник Гевондович-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Электромеханика в космосе
Название: Электромеханика в космосе
Дата добавления: 16 январь 2020
Количество просмотров: 90
Читать онлайн

Электромеханика в космосе читать книгу онлайн

Электромеханика в космосе - читать бесплатно онлайн , автор Иосифьян Андраник Гевондович

Электромеханику, в общем смысле слова, можно определить как науку о законах движения вещественных инерциальных микро- и макротел, несущих электрические заряды и токи, при взаимодействии их с магнитными и электрическими полями. В то же время электромеханика является и отраслью техники, использующей электрическую энергию для производственной, научной и жизненной деятельности и неразрывно связанной с орудиями и средствами труда во всех областях народного хозяйства. В данной брошюре изложено одно из важных применений электромеханики — ее использование в космической технике.

Она рассчитана на широкий круг читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 14 ВПЕРЕД
Перейти на страницу:

Сложные электромеханические устройства, связанные с движением роторов электродвигателей, якорей электромагнитов и реле, электронная техника как в виде отдельных блоков, так и встроенных в корпусы электрических машин и аппаратов — все это требует тщательных контрольных испытаний, гарантирующих полную уверенность в нормальной работе спутника на орбите. Наряду с исследованием отдельных электромеханических систем также должны быть испытаны функциональные связи различных систем, входящих в состав спутников.

В наземных испытаниях следует подвергать тщательному анализу все причины, вызывающие те или иные отклонения при движении аппарата (в стационарных и нестационарных режимах работы электродвигателя и аппаратуры). Иногда для этого требуется многократно дублировать наиболее важную и непрерывно действующую аппаратуру. Все электрические механизмы перед установкой на спутниках проверяются, в частности, в условиях транспортировки, условиях перегрузок при выводе на орбиту, условиях изменения в широких диапазонах значений окружающей температуры, питающего напряжения. В каждом таком режиме проверяется точность функциональной характеристики аппаратуры. В наземных условиях создаются условия глубокого вакуума, низких температур, где в окончательной форме проявляется работоспособность всей аппаратуры. Для проведения наземных испытаний отдельных элементов и электромеханических систем космического аппарата в целом большое значение имеет использование ЭВМ.

Чувствительные элементы электромеханических систем. Информационные приборы электромеханической системы управления дают возможность сориентировать космический объект при его движении в пределах космического пространства. Процесс ориентации в этом случае физически не отличается от ориентации под водой, на воде, в воздухе или на суше. Роль чувствительных элементов в этом процессе сводится к регистрации местоположения космического летательного аппарата, производимой специальным измерительным органом, и указанию его расположения относительно выбранных базовых направлений.

К чувствительным элементам относятся: астродатчики, пеленгаторы теплового поля Земли (так называемые построители местной вертикали), электромеханические гироскопы различных назначений, ньютонометры, приборы измерения гравитационного поля.

Астродатчики. Астродатчик представляет собой миниатюрный оптический телескоп с автоматической электромеханической системой наведения, использующей фотоэлементы, расположенные внутри телескопа. Во время движения спутника по орбите астродатчик сохраняет в поле зрения мини-телескопа изображение Солнца или заданной звезды, т. е. пеленгует небесные светила. В процессе пеленгации специальные электрические приборы, расположенные на осях мини-телескопа, регистрируют угловые координаты продольной оси телескопа относительно осей космического летательного аппарата и передают их в систему управления.

Построитель местной вертикали. Построитель местной вертикали пеленгует центр масс планеты (Земли). Пеленгация может осуществляться или с помощью гравитационного маятника, сохраняющего направление, связывающее центр масс спутника с центром масс планеты, или с помощью пеленгации теплового поля планеты. Чаще всего используется электромеханическая система пеленгации теплового поля Земли (или другой планеты).

Тепловой пеленгатор Земли представляет собой своеобразный телескоп (рис. 8), принимающий не видимые, а инфракрасные, т. е. тепловые, лучи и жестко связанный со строительными осями космического аппарата. Сигналы для пеленгации даются с помощью оптической системы, включающей электрический двигатель с зеркалом, вращающимся на его оси, и промежуточную систему зеркал, передающих сигналы на болометр-термоэлемент, воспринимающий тепловые сигналы Земли или другой планеты.

Электромеханика в космосе - img_8.png

Рис. 8. Приборный узел построителя местной вертикали:

1 — телевизионные датчики; 2 — инфракрасный датчик; 3 — датчик построителя местной вертикали

По изменению интенсивности теплового излучения планеты, воспринимаемого при вращении зеркала, оптическая система с болометром позволяет определять граничный контур планеты в космосе и по этой границе осуществляет пеленгацию. По величине получаемой болометром энергии излучения автоматически (с помощью электронной аппаратуры) определяются угловые отклонения осей космического аппарата от запеленгованного направления, проходящего через центр планеты. Эти отклонения в виде электрических сигналов передаются в систему управления космического летательного аппарата, и с помощью силовых органов управления космический летательный аппарат ориентируется относительно двух осей — оси крена и оси тангажа. Благодаря этому создается следящая система, обеспечивающая ориентацию космического летательного аппарата относительно оси, проходящей через центр масс планеты.

Таковы принципы действия чувствительных приборов для «видимых» ориентиров, спектральные свойства и интенсивность которых могут быть зарегистрированы чувствительными элементами.

Электромеханические гироскопы различных назначений. Электромеханические гироскопы применяются в. качестве силовых стабилизаторов, датчиков угловых скоростей, ускорений, а также в качестве датчиков курса, называемых обычно гироорбитантами. Рассмотрим общие свойства электромеханических гироскопов.

Электромеханический гироскоп представляет собой электрический двигатель с ротором, обладающим большим моментом инерции и выполненным в виде маховика. Чтобы обеспечить большую маховую массу ротора, последний конструируют как внешнюю часть электродвигателя. Ротор гироскопа не имеет выходного устройства вала, так как, вращаясь в подшипниках, он работает только на разгон своей массы или на ее торможение. Статор электродвигателя при питании постоянным током имеет систему полюсов машины постоянного тока со щеткодержателями. При питании переменным током статор двигателя-гироскопа является статором обычного двух- или трехфазного электродвигателя.

Рассмотрим некоторые электромеханические характеристики гироскопа на постоянном токе, физически более простые при анализе работы электродвигателей-маховиков для систем ориентации космического летательного аппарата.

Непосредственно после включения такого двигателя в сеть начинается период разгона ротора, в течение которого двигатель потребляет большой ток и развивает большой момент вращения, обеспечивающий этот разгон. По мере разгона ротора и возникновения в его обмотках электродвижущей силы обратного направления, ток при постоянно приложенном напряжении автоматически уменьшается (вместе с моментом вращения) до ничтожной величины, достаточной только для преодоления трения в подшипниках и побочных потерь. При работе ротора гироскопа в глубоком вакууме энергия, подводимая к двигателю, расходуется только на потери в подшипниках и электромагнитные потери в статоре и роторе. В течение последних лет повсеместно в электромеханических гироскопах коллекторные машины постоянного тока были заменены двигателями переменного тока повышенной частоты [2]. Возникающее при этом вращающееся поле разгоняет ротор до допустимого по прочности конструкции числа оборотов, исчисляемого обычно десятками тысяч в минуту.

Такое устройство с постоянно вращающимся ротором обладает весьма интересными свойствами. Если, например, держать корпус такой машины двумя руками, расположив ось вращения перпендикулярно к туловищу, и поворачивать корпус вокруг собственной оси вращения, то руки экспериментатора никакой внешней силы чувствовать не будут, кроме сил тяжести и ничтожных сил, вызываемых трением в подшипниках (а в условиях невесомости и сила тяжести не будет ощущаться). Если теперь попытаться повернуть корпус электродвигателя на себя или от себя, т. е. вокруг оси, перпендикулярной к собственной оси вращения, то мускулы рук в соответствии с законами механики будут ощущать достаточно большую силу, направление которой будет несколько неожиданным: оно не будет совпадать с направлением, по которому была сделана попытка повернуть ось гироскопа. Электродвигатель-гироскоп будет создавать такой момент вращения, при котором направление собственной оси ротора совпало бы с направлением оси, вокруг которой экспериментатор пытается повернуть корпус на себя или от себя. Такой гироскоп (рис. 9) называется моментным электрогироскопом и используется, как будет показано в дальнейшем, для поворота корпуса искусственного спутника Земли вокруг своих строительных осей.

1 2 3 4 5 6 7 8 9 10 ... 14 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название