В поисках частицы Бога, или Охота на бозон Хиггса
В поисках частицы Бога, или Охота на бозон Хиггса читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Комиссия по безопасности в Брукхейвенской лаборатории и ЦЕРНе обнародовала подробные теоретические обоснования того, почему ни на одном коллайдере не нужно бояться образования странглетов146. Аргументы приводились следующие: если странглеты вообще могут существовать, их трудно создать, а если их все-таки получат, то они будут нестабильны. А если им удалось бы задержаться в этом мире дольше, чем ожидалось, они почти наверняка были бы положительно заряжены и потому не смогли бы притянуть атомные ядра и поглотить их.
До сих пор от ученых поступали уверения в безопасности ускорителей, основанные только на теоретических расчетах. Гарвардские физики Шелдон Глэшоу и Ричард Уилсон сформулировали общую неудовлетворенность этим положением вещей в статье, опубликованной в “Nature” в декабре 1999 года: “Если странглеты существуют (что вполне вероятно), и если они образуют достаточно стабильные кластеры (что вряд ли), и если они заряжены отрицательно (опять вряд ли — все теории уверенно предсказывают, что их заряд положителен), и если крошечный странглет будет создан на RHIC (что чрезвычайно маловероятно), то тут как раз мы и столкнемся с серьезной проблемой. Новорожденные странглеты могут поглотить атомные ядра, начать бесконтрольно расти и в конечном счете сожрать Землю. Одних слов “вряд ли”, хоть и многократно повторенных, все равно недостаточно, чтобы умерить наши страхи перед этим вселенским бедствием”.
Дабы придать силу и убедительность своим выводам, члены Комиссии по безопасности отметили, что природа уже за нас провела эксперименты на “космическом RHIC”. Космические лучи содержат ионы металлов, мчащиеся почти со скоростью света. Они врезаются в минералы, расположенные на поверхности Луны, в астероиды и в свободно движущиеся ионы в облаках межзвездной пыли и газа. Если бы опасные странглеты легко образовывались при столкновениях, они уже существовали бы в межзвездном пространстве.
Как и панику по поводу образования в “Бевалаке” аномальной материи Ли и Вика, страхи перед вредоносными странглетами успокаивали с помощью космических аргументов. Действительно, если за 5 миллиардов лет бомбардировки космическими лучами Луна не была съедена странглетами и не превратилась в гигантский кластер аномальной материи, вряд ли столкновения на RHIC в течение пяти лет повредят Земле. Еще один довод нашелся при анализе судеб астероидов. Действительно, если бы космические лучи создавали “астероидов-убийц”, превращая их в кластеры странглетов, некоторые из них неизбежно упали бы на Солнце или другие звезды и уничтожили бы их. Но как внимательно ученые ни рассматривали видимые в телескопы 70 миллиардов триллионов звезд, никаких других способов их умирания кроме взрыва сверхновой так и не заметили — ничего похожего на поедание странглетами!
Однако ученые ЦЕРНа все-таки проделали расчеты, дабы понять, с какой вероятностью можно ждать от Большого адронного коллайдера подобного неприятного сюрприза.
Наше собственное Солнце постоянно подвергается ударам космических лучей, имеющих энергию по крайней мере не меньшую, чем энергия пучков частиц при столкновениях на БАКе. Приняв во внимание количество звезд в наблюдаемой части Вселенной, ученые оценили, что с начала существования Вселенной природа провела в 1031 раз больше экспериментов, чем предполагается провести за всю жизнь БАКа (около 20 лет). Более того, каждую секунду совокупное воздействие космических лучей на далекие звезды в 10 триллионов раз больше, чем воздействие частиц, получаемых в ускорителе.
Из всех видов катастроф, которые рассматривали ученые в Брукхейвенской лаборатории и ЦЕРНе, наибольшее внимание средств массовой информации привлекло образование черной дыры, проглатывающей нашу планету целиком. Обе группы решительно опровергли возможность такого развития событий. Чтобы создать обычную черную дыру, коллайдеру нужно сжать невообразимо большое число частиц в столь крошечный объем, чтобы гравитация заставила бы этот кластер материи самопроизвольно сколлапсировать. Но ни один из существующих ныне в мире коллайдеров (как, впрочем, и все другие, которые могут быть постронны в обозримом будущем) на такое не способен, а потому обе команды решили не тратить слишком много времени на обсуждение этого сценария.
Нужно оговориться, что, когда ученые отвергли возможность создания в ускорителе черных дыр, они предполагали, что уравнения Эйнштейна — последнее слово в теории гравитации, однако едва ли это так. В некоторых новейших теориях предполагается, что природа имеет скрытые размерности, свернутые (компактизированные) таким образом, что мы не можем их видеть. Правда, до сих пор нет свидетельств того, что мы живем в мире более четырех измерений (три пространственных плюс время), но. если дополнительные измерения все же существуют, в современных коллайдерах частиц вполне могли бы родиться микроскопические черные дыры.
Но и тогда, убеждают нас ученые, нам нечего бояться. В 1975 году кембриджский космолог Стивен Хокинг показал, что черные дыры испускают тепло. Чем меньше их размер, тем больше тепла они теряют. Согласно теории, которая допускает дополнительные измерения, черные дыры, созданные на БАКе, будут космическими крошками диаметром около 10-15 миллиметров. При таком размере они будут экстремально горячие — примерно в миллиард раз горячее, чем вещество в центре Солнца. Хорошая новость заключается в том, что эти черные дыры будут терять тепло так быстро, что в мгновение ока испарятся.
Другой сценарий потенциальной катастрофы, который, впрочем, физики легко опровергли, — создание на ускорителе магнитных монополей. По оценкам Алана Гута, эти поистине странные частицы слишком тяжелы, чтобы их можно было создать даже в самом мощном ускорителе. Самой тяжелой из когда-либо рожденных на коллайдере частиц был обнаруженный в 1995 году на “Теватроне” истинный кварк — он весит около 170 ГэВ. Магнитные монополи, если они существуют, скорее всего, тяжелее более чем в триллион раз.
Ради интереса Комиссия по безопасности ЦЕРНа проанализировала, какой ущерб магнитный монополь мог бы нанести, появись он в их ускорителе. В некоторых теориях утверждается, что магнитные монополи опасны тем, что они преобразуют протоны и нейтроны в электроны, позитроны и другие частицы — по существу, испаряют обычную материю. Однако группа ЦЕРНа подсчитала, что магнитный монополь успеет уничтожить лишь полграмма обычной материи до того, как освободившаяся при этом энергия утащит его в космос.
Во всех этих сценариях Судного дня молчаливо предполагается, что, какой бы из них ни реализовался, ничего хуже себе представить нельзя. Конечно, это верно для людей и миллионов видов живых существ, которые живут рядом с нами на Земле. Но в четвертом сценарии Судного дня ученым пришлось рассмотреть еще более трагичный сценарий, чем разрушение нашей планеты и гибель всех ее обитателей. Речь идет о вакуумном распаде, не оставляющем никакой надежды на возникновение жизни в огромных областях пространства!
Для ученого середины XVII века вакуум — это то, что получается, если приделать один из только что изобретенных тогда насосов к стеклянному сосуду и напрячь весь свой интеллект, чтобы заставить эту чертову штуку работать. Проявив упорство, естествоиспытатель мог удалить весь воздух и получить по-настоящему пустой сосуд — контейнер, полный абсолютного ничто.
Для современных ученых вакуум далеко не пуст. Он содержит множество невидимых мощных полей и связанных с ними частиц, которые постоянно появляются и умирают. В этих полях запасена энергия, которую называют энергией космического вакуума Вселенной.
Наиболее стабильное состояние Вселенной — такое, в котором она обладает минимумом энергии. Проблема в том, что ученые не знают, находится ли наша Вселенная в самом устойчивом состоянии или нет. Допустим, энергия вакуума не минимальна, тогда при некотором воздействии он может неожиданно приобрести более стабильную конфигурацию с меньшей энергией.
Вы можете наблюдать аналогичный процесс в реальности, не выходя из вашей гостиной. Когда вы гордо устанавливаете фотографию своей улыбающейся тещи (свекрови) на каминной полке, она (фотография) приобретает определенную потенциальную энергию. Гравитация спит и видит, как бы уменьшить эту энергию, сбросив фотографию вниз в камин. Все, что нужно для этого, — случайное дуновение или слабый толчок, и портрет обожаемой родственницы будет выведен из состояния равновесия и слетит с полки.