В поисках чуда (с илл.)
В поисках чуда (с илл.) читать книгу онлайн
Это книга о разведчиках, имена которых отсутствуют в известных «шпионских» хрониках. О следопытах незнаемого, которые повседневно, чаще всего буднично, незаметно, без претензий на «бронзы многопудье» ведут свой многотрудный поиск, совершая нередко настоящие подвиги во имя истины, во имя человека, во имя мира на всей планете. Да, подвиги, ибо их деятельность требует не только ума, не только трудолюбия, но и мужества. Еще Маркс говорил, что у входа в храм науки, как и в преддверии ада, должно быть выставлено требование: «Здесь нужно, чтоб душа была тверда, здесь страх не должен подавать совета». И еще говорил Маркс: «В науке нет широкой столбовой дороги, и только тот может достигнуть ее сияющих вершин, кто, не страшась усталости, карабкается по ее каменистым тропам».
Неторными, тернистыми тропами шла советская наука к ее нынешним высотам. Какое наследство оставила ей царская Россия? Малограмотное население. Острая нужда в специалистах, учебных заведениях, научных учреждениях А тут еще разруха, голод, саботаж «старой интеллигенции»… Потом была война, унесшая миллионы жизней, истощившая экономику, отвлекшая науку от ее мирных дел… И все же, несмотря на все невзгоды и суровые испытания, наш народ за короткий период — всего за полвека! — достиг сияющих вершин в науке и технике и заставил весь мир говорить о «русском чуде».
Здесь упомянуты не все, увы, далеко не все, кого хотелось бы, кого нужно назвать, — история еще воздаст им должное.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А газы? Всего лет 13 назад заработал у Прохорова и Басова молекулярный генератор на аммиаке.
В 1960 году советские исследователи В. К. Аблеков, М. Е. Песин и И. Л. Фабелинский, пропустив электрический разряд через смесь ртутных и цинковых паров, десятикратно усилили поток излучения. Пары ртути, цезия, других металлов сейчас успешно применяются в лазерной технике. Гелий, неон, аргон, криптон, ксенон… Наряду с этой благородной когортой мощно засветились кислород, азот с двуокисью углерода, даже пары воды. Правда, в отличие от инертных газов все они испускают излучение не путем электронных переходов, а благодаря колебательным движениям атомов в молекуле — тем самым, которые обусловливают комбинационное рассеяние. Коэффициент усиления у них меньше, поэтому трубки таких лазеров напоминают стеклянные колонны длиной в метры.
Уж коли физики дошли до газов, которыми мы дышим, то не заставят ли они лазировать обыкновенный воздух? А творец первого генератора на инертных газах американский физик Али Джаван поговаривает о создании… огненного лазера! Он считает, что когерентное излучение удастся получить от пламени, возникающего при горении некоторых веществ.
Уж не гаринские ли «пирамидки» шагнут в действительность из утопии Алексея Толстого?
На первый взгляд гаринские чертежи могут показаться чуть ли не патентной заявкой на рецепт квантового генератора. На деле же они не имеют с этим изобретением решительно ничего общего, кроме чисто внешнего сходства. Но если Гарину не удалось предвосхитить принцип лазера, то нельзя отказать в прозорливости другому герою романа — коммунисту Шельге. Правда, слова Шельги касаются применения, а не изготовления прибора: «Опасность величайшая, неизмеримая грозит миру…»
«Икс-оружие», «пушки, стреляющие молнией», «лучи смерти» — за этими названиями, будто сошедшими со страниц фантастического романа, стоят вполне реальные ассигнования Пентагона на разработку наисовременнейших наступательных средств а-ля гаринский гиперболоид (проект «Дефендер»).
В марте 1962 года американский журнал, посвященный авиационной и космической технике, напечатал статью Б. Миллера «США приступают к программам лазерного вооружения».
Бесславно закончилась авантюра Гарина, употребившего гиперболоид на то, чтобы стать властелином мира. Несдобровать и тем, кто захочет сделать новое чудо света слугой тьмы, оружием насилия.
Трудно предугадать судьбы лазера, когда он возмужает, — ведь сейчас он переживает пору своего младенчества. Кто знал лет 60 назад, какое будущее ожидает радиоприемник или электронную лампу?
А вспомните стремительную поступь расщепленного атома и космической ракеты!
Или историю радиолокации.
Эхо приходит с донесением
…Это был настоящий плавучий город, многоэтажный, шумный, густонаселенный. На борту лайнера водоизмещением 60 тысяч тонн находилось 1316 пассажиров и 890 членов экипажа. Он вышел в свой первый трансатлантический рейс.
14 апреля 1912 года в 23 часа 40 минут с фор-марса раздался хриплый возглас вахтенного матроса:
— Прямо по носу айсберг!
Мало кто почувствовал толчок: удар о подводный выступ ледяной глыбы казался слабым. Между тем борт был располосован от носа до кормы; сквозь зияющую стометровую пробоину бурлящими потоками вливалась вода.
В 2 часа 20 минут «Титаник» пошел ко дну. Вместе с ним погибло полторы тысячи человек…
Если бы колесо истории повернулось вспять и капитан поставил наблюдателем самого опытного, самого зоркого в мире марсового, снабдив его лучшим биноклем и мощным прожектором, удалось бы избегнуть катастрофы? Такой гарантии нет. Массивная, неповоротливая махина, несущаяся с большой скоростью, не в этот раз, так в другой могла напороться на ледяной утес, на встречный корабль, незаметно подплывающий под покровом ночи или тумана; ведь физиологические возможности зрения, даже самого острого, даже при отличной погоде, не безграничны!
Навигационной технике было в пору хоть самой подавать сигналы «505». Ее выручила радиолокация.
…За стеклом иллюминатора — непроглядная мгла. Да еще туман и пурга. Сколько ни всматривайся в ночь, хоть до рези в глазах, — не видно ни зги. А кругом — плавучие льды. А позади — караван судов. Но атомоход «Ленин» уверенно держит путь. Перед штурманом круглое оконце, напоминающее не то иллюминатор, не то экран телевизора. По мерцающему зеленовато-голубому полю там и сям разбросаны светящиеся пятна. Здесь они образуют цепочку — это кромка берега. Точка чуть левее и выше — встречное судно. До него семь с половиной кабельтовых, до острова, что справа по борту, вдвое дальше — полторы мили. Непрерывно меняющаяся за бортом обстановка здесь как на ладони. И как стрелка по циферблату секундомера, только быстрее, все бегает и бегает по экрану индикатора неугомонный радиус-луч, прорисовывая объекты, выхваченные из тьмы и тумана. А на фок-мачте столь же неутомимо кружится решетчатая параболическая антенна — это она бдительно прощупывает пространство своим незримым лучом.
Весь советский флот дальнего плавания оснащен надежными всевидящими приборами отечественного производства.
Туго пришлось бы не только надводным кораблям, но также воздушным и космическим, если бы не радары. На самолетах, в портах и на аэродромах, на станциях слежения за спутниками — всюду исправно и неусыпно несут они свою верную службу.
А давно ли сама мысль о радиозрении, безотказно действующем в любое время суток и при любой погоде, казалась несбыточной мечтой?
Еще в 30-е годы широко в ходу были звукоулавливатели. Несколько громоздких раструбов, похожих на граммофонные, реагировали на сотрясение воздуха, донося до ушей «слухача» рокот мотора, — так удавалось узнать о приближении самолета, скрытого от глаз покровом ночи или облачной завесой. Удавалось с грехом пополам: ведь гул зачастую «сдувается» в сторону ветром, не слышен на больших расстояниях, да и доходит сравнительно медленно — на каждые 5 километров требуется целых 15 секунд; за это время даже «небесный тихоход» той эпохи успевал пройти больше километра.
И хотя начало 30-х годов ознаменовалось настоящим бумом вокруг автоматизированных «комбайнов», совмещавших в себе прожекторы со звукоулавливателями, постепенно складывалось трезвое мнение: как порознь, так и в виде новоиспеченных гибридов эти приборы обречены, они бесперспективны, сколько их ни совершенствуй. Но ничего лучшего пока не было в распоряжении ни у одной страны.
Ключ к решению проблемы лежит в радикально ином подходе. Зондирующее устройство должно полностью полагаться на собственное излучение, как прожектор, а не на «чужое», испускаемое объектом поисков, как в случае звукоулавливателя или теплопеленгатора. Только вместо световой надо найти другую энергию. Какую? Тоже электромагнитную, ибо она самая быстрая, самая дальнодействующая. Почему бы не использовать радиоволны?
Так примерно излагал свои мысли молодой инженер Павел Ощепков на совещании летом 1932 года. В Мурманске тогда уже действовала импульсная ионосферная станция, созданная в 1932 году под руководством профессора Михаила Александровича Бонч-Бруевича. Коротковолновое излучение, расходясь порциями от антенн во все стороны, достигало и верхних, «наэлектризованных», слоев атмосферы. Отразившись от них, оно частично возвращалось к земле, где улавливалось приемником. По длительности такого «радиорейса» определялась высота ионосферы, проводились и другие исследования.
А вот радиообнаружение сравнительно небольших объектов (самолетов, кораблей) многим казалось несерьезной затеей.
Радар… «Величайшим изобретением за последние полвека» назовет его после второй мировой войны Уинстон Черчилль, упирая на его боевой аспект и присовокупив, что его подарила миру именно британская нация. США будут оспаривать у Англии честь называться первооткрывателями. Не придя к единому мнению, историки напишут в официальном американском отчете: «Вероятно, эта идея возникла почти одновременно в Америке, Англии, Франции, Германии и даже в Японии».