Открытия и изобретения, о которых должен знать современный человек
Открытия и изобретения, о которых должен знать современный человек читать книгу онлайн
Перед вами своеобразная энциклопедия величайших в истории открытий и изобретений, существенно повлиявших на нашу жизнь и определивших облик современного мира, — от начала письма и математического счета до изобретения компьютера и технологии генной инженерии.
Книга содержит 33 раздела, все сведения в ней строго классифицированы, так что пользуясь оглавлением, вы сможете легко найти нужную тему.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Изобретение гальваноэлемента
История физики полна курьезов и парадоксов, в чем успел убедиться читатель. Если спросить у человека, далекого от точных наук, кто изобрел гальванический элемент, то можно услышать в ответ, что это сделал итальянский врач Л. Гальвани. В действительности создатель первого гальванического элемента безвестен, а само изобретение насчитывает несколько тысячелетий.
Об этом мы можем судить благодаря удивительной археологической находке, сделанной под Багдадом. Ученые во время раскопок древнего города Вавилона, находившегося прежде на этом месте, обнаружили странную конструкцию из металлических кружков, в которой специалисты узнали очень примитивную гальваническую батарею. Для чего понадобилась батарейка в ту далекую эпоху, никому неизвестно. Находка отнесена к числу самых загадочных артефактов.
Гальвани же не мог создать гальваноэлемент, поскольку придерживался ошибочных взглядов на сущность открытого им явления. Заинтересованный действием электрического тока на живые ткани, ученый в 1780-х гг. проводит серию экспериментов над препарированными лягушками. Гальвани наблюдал, как во время грозы мышцы лягушек, подвешенных на металлические крюки, сокращаются под действием атмосферного электричества.
Однако более поздние опыты, поставленные в ясную погоду и в комнатных условиях, показали, что мышцы у препарированных лягушек все равно сокращаются время от времени. Спинной мозг у таких лягушек был по-прежнему соединен с медным крюком, который касался железной пластины. Врач решил, что обнаружил «живое электричество», вырабатываемое организмом лягушки. Над Гальвани многие посмеялись. «На меня нападают две совершенно противоположные партии: ученые и невежды, — писал впоследствии Гальвани. — И те и другие называют меня лягушачьим учителем танцев».
Возможно, замечательное открытие оказалось бы забыто, но необычными опытами заинтересовался соотечественник Гальвани, физик А. Вольта, который доказал, что в организме лягушки нет «живого электричества». До известной степени Вольта ошибался, поскольку в организме любого живого существа присутствуют электрические заряды. Электротоки постоянно перемещаются в тканях, в первую очередь в нервной, передавая по ней импульсы в мозг и из мозга. Электротоки особенно ярко проявляются при работе мышц — скелетных и сердечной.
Электрокардиограммы (ЭКГ) и электроэнцефалограммы (ЭЭГ) составляются по данным измерений интенсивности биотоков, чтобы проследить за работой сердечной мышцы и коры головного мозга. Тем не менее Вольта был прав в одном: в своих экспериментах Гальвани не смог бы выявить электротоки в организме лягушки, поэтому «живого электричества» врач не открыл. Физик предположил, что мускулатура животного послужила всего лишь индикатором присутствия тока, т. е. среагировала на него сокращениями.
Мышцы лягушки в экспериментах Вольта сокращались под воздействием обычного электричества (не «живого») точно так же, как в опытах Гальвани. Источником тока в опытах врача послужил, видимо, контакт двух металлов, а именно меди и железа. Тканевые жидкости в теле лягушки играли роль дополнительного проводника, помещенного между металлами. Отталкиваясь от своих предположений, физик сконструировал первую гальваническую батарею, повлиявшую на дальнейшее развитие науки.
Вольтов столб, как назвали этот источник постоянного тока ученые, состоял из ряда металлических пластин двух типов — цинковых и серебряных, разделенных картонными кружками, которые предварительно пропитывались соленой водой. Поскольку приборов для измерения тока тогда не существовало, то Вольта использовал собственную руку для регистрации тока. Если подключить гальванический элемент в замкнутую цепь, проходящую через человеческое тело, то возникают сходные ощущения, как в эксперименте с лейденской банкой.
Вольта объяснил возникновение тока дисбалансом электрических зарядов в батарее. Когда взаимодействуют разнородные металлы, то в них нарушается равновесие электрических зарядов. В замкнутой цепи заряды приходят в движение, стремясь прийти к равновесию. Но поскольку это не удается, то заряды движутся постоянно, порождая непрекращающийся электрический ток. В дальнейшем Вольта усовершенствовал свой столб, предложив чашечную батарею гальваноэлементов.
Используя химическое действие электротока, ученые стали применять батареи для проведения исследования веществ. Так, к примеру, англичанин Дэви в 1807 г. открыл неизвестные до того момента элементы калий и натрий, расщепляя постоянным током некоторые щелочи. Ныне батареи применяются невероятно широко почти во всех компактных или переносных устройствах, работающих от электротока.
На батарейках работают переносные компьютеры, карманные фонарики, магнитофоны, наручные кварцевые часы, будильники, поющие поздравительные открытки, детские игрушки и множество других устройств. Наконец, на батарейках работают самые полезные домашние устройства — пульты дистанционного управления. Американские специалисты по маркетингу подсчитали, что сегодня в развитых странах на каждую семью приходится в среднем от 2 до 3,5 пульта дистанционного управления.
С помощью таких пультов мы включаем телевизор и видеомагнитофон, управляем джакузи и компактным домашним кинотеатром, открываем дверь гаража. Вероятно, в обозримом будущем станут выпускаться пульты, совмещающие в себе все необходимые функции, т. е. позволяющие оперировать любой бытовой техникой, рассчитанной на дистанционный контроль. Уже сейчас в продаже появились универсальные пульты, пригодные для дистанционного управления как телевизором, так и видеомагнитофоном (естественно, речь идет не о видеодвойке). По мере совершенствования пультов и их дальнейшей эволюции будут требоваться и батарейки, которые, скорее всего, тоже претерпят различные метаморфозы.
Сопротивление току
Всякий без исключения проводник электрического тока способен в силу особенностей своего атомарного строения оказывать сопротивление движущимся зарядам. Это легко заметить на простейшем опыте, который можно провести поздним вечером в каждом городе, когда включается освещение улиц. Фонари вспыхивают один за другим, по очереди, как будто бы ток бежит неторопливо, с легким запозданием.
Если принять во внимание скорость электронов, почти равную световой, то получится, что человек неспособен увидеть запаздывание зарядов. Ток должен перемещаться по проводам практически мгновенно. Тем не менее этого не происходит. Дело в том, что сам материал проводов тормозит ток.’ Описанное свойство проводников названо в физике электрическим сопротивлением.
Открыт закон Ома
Еще в 1729 г. английский физик Грей обнаружил, что электрический заряд свободно передается от одних тел к другим при наличии своеобразного моста, иными словами, вещества-посредника. Скажем, медная проволока вполне могла служить таким посредником, она хорошо проводила электричество. По шелковой нити же электричество не распространялось, что позволило в дальнейшем использовать этот материал в качестве изоляции. Грей, т. о., пришел к выводу, что в природе существуют проводники и непроводники электричества.
Движение зарядов по проводникам от одного тела к другому ученые назвали электрическим током. К открытию природы электрического тока физиков подвели работы Л. Гальвани и А. Вольта, а также некоторых других исследователей электричества. В частности, Вольта приходит к выводу о существовании разности электрических потенциалов в замкнутой цепи, которую сам же первым собрал. Ученый после открытия контактной разности потенциалов составил т. н. ряд напряжений.
Ранее рассказывалось, что при сочетании разных металлов в гальваническом элементе производится неодинаковый ток, поскольку они заряжены неодинаково. Физик описал сущность контактной разности потенциалов так: «В силу такого соприкосновения электрический флюид (заряд) гонится от… металлов, от одного больше, от другого меньше (больше всего от цинка, меньше всего от серебра)». Вольта выстроил ряд из разнородных металлов, взятых в контакте, по возрастающему напряжению между ними.