«Ага!» и его секреты
«Ага!» и его секреты читать книгу онлайн
По профессии Елена Викторовна Саларина — журналист. В 1954 году она окончила факультет журналистики МГУ и десять лет заведовала отделом науки в журнале «Знание — сила».
«Ага! и его секреты» — пятая книга Елены Викторовны Сапариной. Ее первая книга, «Небесный землемер», вышла в 1959 году в издательстве «Молодая гвардия», здесь же через три года вышла «Кибернетика внутри нас», а в 1964 году — «О чем молчат медузы». Несколько раньше, в 1963 году, Детгиз выпустил ее книгу «Тортила учится думать».
Интересы Елены Викторовны довольно широки и многообразны: от биологии до кибернетики, от бионики до психологии и эвристики. Обо всем этом она и рассказывает в своих книгах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если вы хоть раз участвовали в каком-нибудь конкурсе, то хорошо помните, что его проводят всегда в несколько туров. Ни первый, ни второй туры еще не обеспечивают первенства победителям, они лишь отсеивают слабых участников. Наш мозг при обучении действует примерно так же. Он не сразу и не всю информацию запоминает, а много раз отсеивает менее важную. И только после нескольких туров отборочного конкурса откладывает нужные сведения в памяти.
Придирчивыми «экзаменаторами» служат промежуточные сигналы, промежуточные раздражители, возникающие в процессе анализа обстановки. Они сортируют информацию по значению. Предварительные сведения посылают в кратковременную память, на временное хранение. И только тщательно проверив, насколько они важны, решают: забыть их или направить в долговременную память, на постоянное местожительство.
Часть таких алгоритмов удалось разгадать и даже воплотить их в программе для машины. Но дело это довольно кропотливое, трудное и требует еще многих и многих исследований прежде всего того, как мы сами учимся. Вот почему одновременно с работой над программированным обучением появилась мысль обойтись без программы. А что, если действовать так, как учили раньше мастера своих подмастерьев? По принципу: «Я тебе объяснять не буду, ты смотри и учись».
Нельзя ли так же поступить и с машиной? Это особенно важно в тех случаях, когда человек при всем желании не может объяснить, как именно он действует. Вот, скажем, мы отличаем буквы одну от другой или узнаем знакомых в толпе. Рассказать, как мы это делаем, человек не может, потому что совершает все опознавательные действия интуитивно. И тем более мы не можем написать машине подробную инструкцию, как отличить букву «А» от «Б».
Но учитель в школе тоже в этом случае ничего не объясняет первоклассникам. Он просто показывает им разные буквы и называет их. И они уже как-то сами учатся различать «А» от «Б».
Одновременно в нескольких странах машины без всякой программы усвоили основы азбуки. Успешный опыт натолкнул на еще более дерзкую мысль: заставить машину учиться вовсе без учителя, поставив ее на место не школьника, а этакого Маугли, который сам, абсолютно без всякой помощи со стороны, научился бы, разглядывая буквы, понимать, что они чем-то отличаются друг от друга. Он, может, и не сумел бы назвать буквы так, как называем их мы, но зато придумал бы им свои имена.
Как, по каким признакам он классифицировал бы разные буквы? Наверное, что-нибудь вроде этого: «А» — уголок и горизонтальная палочка посредине, «Е» — три горизонтальные палочки и одна вертикальная, «О» — кружок, «Л» — уголок, обращенный острием вверх, и т. п.
Когда в одном из наших технических институтов инженеры взялись за эту невероятную затею, психологи только посмеивались: пробовать пробуйте, а что у вас выйдет?
Вышло же вот что. Вычислительная машина оказалась весьма способным «Маугли». Она довольно быстро определила, из каких «деталей» состоят разные буквы и что между ними общего. Машина сама установила разницу между «уголками», «кружочками» и «вертикальными черточками». Но тогда, выходит, у нее выработались простейшие понятия? Именно так и расценивают результаты своих опытов инженеры из Института автоматики и телемеханики.
Вот и встал опять «проклятый» вопрос о пределе возможности машин. Если машины не просто тупицы, быстро выполняющие вычисления, а им доступны мыслительные действия в таком широком диапазоне — от образования понятий до творчества, то, видимо, скоро настанет эра настоящих думающих автоматов?
Инженеры всегда были в этом вопросе большими оптимистами. Как только появились вычислительные машины, они заявили, что в принципе возможно автоматизировать любую умственную деятельность, если будут известны правила, по которым она происходит. Достаточно лишь разложить эти правила на элементарные машинные операции. «Конструкция автомата в данном случае не имеет решающего значения, — говорят они. — На обычной современной вычислительной машине можно промоделировать самые сложные формы мышления. Было бы только чем заполнять машинную память».
Но когда они увидели, с какими бесконечными подробностями приходится объяснять машине самые простейшие правила мышления (даже весьма еще несовершенные программы перевода с одного языка на другой состоят из 10–20 тысяч машинных инструкций), оптимизм их несколько поубавился.
А ведь многие мыслительные действия вообще не удалось представить в виде системы правил. Взять хоть то же распознавание знакомого лица или знакомой ситуации. Правила, по которым совершается эта важнейшая мыслительная операция, запрятаны где-то в глубинах подсознания и до них не так-то просто докопаться. Но, видимо, они достаточно сложны. Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры.
Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества?
Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем. Снабдить машину не подробной программой действия, а лишь способностью учиться. Тогда в машину надо будет ввести небольшую исходную информацию. Все остальные сведения, необходимые для моделирования мыслительного процесса, она раздобудет сама в процессе учебы. Вместо подробного расписания работы машине дают основную рабочую программу, в которой описан только принцип действия. И «обучающую» программу, которая по ходу дела вносит исправления в первую.
Однако способные к обучению и самосовершенствованию машины не разрешили всех проблем, связанных с моделированием мышления. Центр тяжести просто переместился. Стало проще составлять программу, зато дольше и сложнее учить машину.
Учить машину думать ничуть не проще, чем человека. А результаты пока довольно средние. Так что ни о каком преимуществе машины не может быть и речи. Во всяком случае, пока исходные позиции электронного ньютона и школьника Петьки неравны (информация, закладываемая в начинающую учиться машину, намного меньше той, которой располагает первоклассник), человек может не бояться ее соперничества.
Очевидно, мало наделить машину способностью учиться. Надо еще начинить ее теми алгоритмами, теми эвристическими приемами, что составляют механизмы нашего ума. Тогда ее работа станет больше похожа на мышление человека. В справедливости этого мы с вами имели возможность убедиться на многочисленных примерах творчества машин.
Но мы также знаем, что и сам-то механизм человеческого мышления далеко еще не раскрыт. И надо прямо добавить: чем глубже исследовательская мысль человека обращается к познанию самого себя, тем более сложными предстаем мы с вами перед микроскопом науки и тем больше нового и неожиданного открывается в наших мыслительных способностях.
Мы с вами подошли сейчас к интереснейшей области. Вспомните: когда производили опыты над человеком, чтобы вырвать некоторые секреты его мышления и передать их машине, испытуемого приводили в состояние, близкое, если можно так выразиться, к машинному, — его ограждали от всех эмоций, насколько это возможно, от всех внешних впечатлений, помещая в специально изолированную камеру. Ведь машина бесчувственна. И ей требовалось дать «очищенную от посторонних примесей», бесчувственную человеческую мысль.
Нужно сказать, что бесчувственность счетнорешающих устройств, эта самая их машинная суть, рассматривалась с первых шагов кибернетики и рассматривается и сейчас как огромное их преимущество в решении целого ряда практических задач.
Не поддающиеся гневу, не расстраивающиеся от мелких огорчений, не подверженные человеческим эмоциям, комбинации электронных ламп и сопротивлений, пусть с машинной тупостью, но и с хладнокровием механизма, бесстрастно выясняют все «за» и «против» и дают точный математический ответ.