Электрическая Вселенная. Невероятная, но подлинная история электричества
Электрическая Вселенная. Невероятная, но подлинная история электричества читать книгу онлайн
Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «Е=мс 2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.
David Bodanis ELECTRIC UNIVERSE How Electricity Switched on The Modern World © 2005 by David BodanisВнимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если бы существовали только две эти возможности — одни вещества проводят электрический ток, другие не проводят, — все наследие Тьюринга состояло бы сейчас из нескольких статей и огромных, вечно перетопленных помещений, наполненных сложными конфигурациями штекеров и электронных ламп. Тех компьютеров, которые мы воспринимаем ныне как данность, попросту не существовало бы. Однако на свете существуют не только металл и стекло.
В нашей Вселенной имеется кое-что еще, и оно дает нам третью возможность.
Отправляясь в свои долгие пробежки, Тьюринг нередко следовал по вьющимся среди холмов сельским тропинкам, а то и выбегал на песчаные пляжи, которыми столь богата островная Британия. Эти пески и холмы в значительной мере состоят из элемента, именуемого кремнием, — как, собственно, и большая часть поверхности нашей планеты: кремний — основной материал, из которого образована гора Эверест
У радиотехников этот самый кремний давно уже вызывал раздражение. В отличие от всего остального, он никак не желал укладываться в одну из двух принятых категорий — он не был металлом, неизменно проводящим электричество, но не был и стеклом или алмазом, никогда такового не проводящими. Он вел себя по-другому, и весьма непонятно. Большую часть времени включенный в электрическую цепь кусочек кремния вроде бы изображал из себя обычный, заурядный изолятор. И прекрасно. Вы подсоединяли к кремнию провод, пропускали по проводу ток, и он, дойдя до кремния, останавливался, словно уткнувшись в преграду.
Не давало радиотехникам покоя то обстоятельство, что кремний вел себя так не всегда. Временами кусок кремния, который считался изолятором, вдруг претерпевал какие-то внутренние изменения и от роли достойного, надежного, радующегося своему ничегонеделанью изолятора отказывался. Он вдруг обращался в проводник, беспрепятственно пропускавший потоки электронов. То есть он не был ни проводником, ни изолятором. Он был «полупроводником».
Кремний вел себя столь переменчиво, что, когда огромный исследовательский отдел компании «Белл лабс» приступил к работам по созданию немеханических переключателей, одна из первых его директив потребовала отмены любых исследований кремния — примерно такую же мудрость могла бы проявить компания «Дисней», уволив Джеффри Катценберга в аккурат перед тем* как он стал продюсером «Шрека». По счастью, «Белл лабс» — компания очень большая, а в больших компаниях указания начальства часто удается обойти стороной. В «Белл» работал один исследователь, Рассел Ол, которого переменчивая природа кремния интересовала уже не первый год. Он помещал кусочки кремния в схему радиоприемника, а затем укладывал этот радиоприемник в коляску своего младенца-сына. И отправлялся на прогулку по Нью-Йорку, радуясь возможности точно установить, когда кремний проводит электричество, а когда не проводит, — ну и заодно проветривая легкие сына. Ол был энтузиастом, уверенным, кто когда-нибудь это чувствительное, переменчивое вещество сможет оказаться очень полезным. Потом сын его из коляски вырос, приятные кремниевые прогулки прекратились, однако Ол продолжал исследовать кремний в лаборатории. И когда «Белл» попыталась эти исследования прекратить, он нашел способ обойти приказ начальства и сохранить свою исследовательскую группу.
В 1946-м и затем 1947-м благодаря ранним работам Ола и других стало наконец понятно, что происходит внутри кремния. Иногда это вещество образует совершенные кристаллические решетки, напоминающие способный довести человека до головокружения рисунок М. К. Эшера, на котором трехмерные строительные леса растягиваются до бесконечности. Однако на нашей планете отыскать совершенство трудновато. В кремнии, который добывается в природном его состоянии или расплавляется, а затем охлаждается в лаборатории, в этих совершенных лесах почти наверняка появляются трещинки и прорехи. В такие трещины кристаллической решетки могут забиваться несколько атомов примеси, фосфора к примеру, приносящих с собой примесные электроны. Превосходные, податливые дополнительныеэлектроны.
Если бы электроны просто проходили через кремний, он стал бы еще одним «вечно открытым» переключателем. Однако Ол и другие знали квантовую механику достаточно хорошо, чтобы сообразить: электроны, занимающие места в кристаллической решетке кремния, способны воздействовать на другие электроны и порой замедлять их, причем делать это даже на расстояниях по атомным меркам огромных. Если ввести в решетку правильное число примесных электронов, эта странные эффекты приведут к тому, что прохождение через нее других электронов, а стало быть, и передача электрического тока станут невозможными. Однако при несколько иной внешней «настройке», а именно к ней и подбирались исследователи компании «Белл», вглядываясь в свои лабораторные создания, пробуя и изучая различные добавки к ним или помещая их — с великим тщанием — в различные силовые поля, странные эффекты «замедления» будут исчезать, и электроны снова смогут свободно проходить через кремний.
Химия — наука слишком сложная, чтобы сражаться с ней в одиночку, и Ол свои возможности по этой части уже исчерпал. Ресурсы «Белл лабс» начали переходить в распоряжение Уолтера Браттейна, тихого экспериментатора, выросшего на ранчо в Орегоне, и Джона Бардина, еще даже более тихого теоретика, родившегося в Висконсине. (Бардин был так тих и внешне юн, что, когда он, обучаясь в Висконсинском университете, тихо предлагал старшекурсникам сыграть на деньги в бильярд, они его предложение неизменно принимали. С той же тихой вежливостью укладывал он в карман и выигрыш — игроком Бардин был блестящим, одним из лучших, когда-либо учившихся в этом университете.)
Ныне на четвертом этаже невзрачного лабораторного здания в Мюррей-Хилл, штат Нью-Джерси, двое Друзей, Браттейн и Бардин, принялись за работу, используя результаты, полученные Олом и химиками Университета имени Пердью; используя также переводы документов, в которых описывались спорадические исследования полупроводников, проводившиеся во время войны в Германии; используя собственное знание квантовой механики и новых методов химического производства, — и работали они не покладая рук. В октябре 1947 г°Д апоявились первые признаки успеха, а к декабрю того же года сомнений в нем уже не осталось. Теперь они могли заставлять электроны протекать сквозь кремний и могли останавливать их. Они создали тот самый работающий на атомном уровне переключатель, который искал Тьюринг.
Это стало одним из величайших открытий современности. В течение всей истории человечества людям чинила препоны ужасная сила трения. Мотыги скребли почву, увлекая ее за собой. Строившие египетские пирамиды рабы тратили почти всю силу своих плечевых и ножных мышц на преодоление трения, возникавшего между перемещаемыми ими огромными каменными блоками и землей под ними. Паровые и автомобильные двигатели и даже двигатели самых быстрых реактивных самолетов также расходуют на преодоление трения огромную энергию. А вот эти кремниевые камушки способны пропускать через себя электрический ток в том или ином направлении, и при этом самому камушку никакого движения совершать не приходится, не приходится перебрасывать из стороны в сторону язычок металлического переключателя. Это было бы делом слишком медленным и обременительным. Камушек просто хранит неподвижность, точно сидящий Будда, и изменяется внутренне, позволяя потокам электронов течь по способным трансформироваться «рудным жилам», лежащим внутри него.
Если Тьюринг желал посылать электрический ток лишь в тех случаях, когда принималось некое конкретное решение, ему довольно было направить этот ток по одной из таких рудных жил. Поначалу току пришлось бы просто ждать, без пользы теряя электроны, — рудная жила оставалась закрытой. Но стоило преобразовать ее, прибегнув к разработанным Братгейном и Бардином тонким методикам, и все изменялось. Возникал «туннельный» эффект, и сигнал получал возможность устремиться вперед.
Родилась новая технология, а это означало, что для нее надлежит придумать и новое название. Сочинить такое обобщенное прозвище — дело нелегкое. Если вы занимаетесь тем, что управляете большими механическими объектами, естественно будет сказать, что вы работаете с «механикой». Управление электронами уже получило вполне понятное название — «электроника»» Но какое имя дать ключевому для этойновой технологии устройству? Вопрос очень непростой, поскольку, когда дело доходит до словесных упражнений, инженеры начинают вести себя просто пугающим образом. Происходили обсуждения, голосования — одно предложение выглядело не вполне изящным: «усилитель поверхностного состояния», другое и выговорить-то было трудно: «йотатрон» (от греческой буквы йота, используемой для обозначения чего-то очень маленького).