-->

Радиоисследования планет с космических аппаратов

На нашем литературном портале можно бесплатно читать книгу Радиоисследования планет с космических аппаратов, Крупенио Николай Николаевич-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Радиоисследования планет с космических аппаратов
Название: Радиоисследования планет с космических аппаратов
Дата добавления: 16 январь 2020
Количество просмотров: 210
Читать онлайн

Радиоисследования планет с космических аппаратов читать книгу онлайн

Радиоисследования планет с космических аппаратов - читать бесплатно онлайн , автор Крупенио Николай Николаевич

Изучение планет с помощью радиофизической аппаратуры, устанавливаемой на автоматических межпланетных станциях, занимает важное место в космических исследованиях. В брошюре рассказывается об истории радиоисследований Луны и планет с космических аппаратов, об используемых методах исследований и полученных результатах.

Брошюра рассчитана на студентов и преподавателей вузов, учителей средних школ, а также на более широкий круг читателей, интересующихся современными достижениями в области космических исследований.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 14 ВПЕРЕД
Перейти на страницу:

3. Коэффициент рассеяния. Он определяется величиной отношения энергии, принимаемой антенной со всех направлений, кроме соответствующего максимальному усилению (в главном лепестке диаграммы направленности), к энергии, принимаемой в направлении этого главного максимума усиления.

Коэффициент рассеяния фактически определяет влияние, оказываемое на принимаемое излучение (от исследуемой области) излучением близлежащих к ней районов (в направлениях вне главного лепестка). Чем выше коэффициент рассеяния, тем больше бывает ошибка измерений, поскольку в этом случае на полученные результаты будут оказывать сильное воздействие боковые лепестки диаграммы направленности. Размеры области (зоны), излучение которой на входе приемника свободно от влияния боковых лепестков, зависят от ширины диаграммы направленности данной антенны и от расстояния приемника до наследуемой области. Поэтому очевидна необходимость использования антенн с более узкой диаграммой направленности. Однако это связано с увеличением размеров антенн, что не всегда возможно из-за пространственных и весовых ограничений, возникающих при использовании космических аппаратов.

Мы не будем здесь касаться конструкций и схем построения антенн, используемых на борту космических аппаратов. Отметим только, что антенны с шириной диаграммы направленности менее 10° обычно называют антеннами с узкой диаграммой направленности, с шириной более 10° — антеннами с широкой диаграммой направленности.

Советский радиоастроном В. С. Троицкий в свое время открыл поляризацию теплового радиоизлучения Луны, характеризуемую тем, что интенсивность принимаемого радиоизлучения оказалась зависящей от поляризационных свойств антенны и угла, под которым она направлена к исследуемой поверхности (угла визирования). В связи с этим изучение поляризации стало играть определенную роль в радиофизических измерениях теплового излучения планет.

Антенны космических аппаратов рассчитаны на прием радиосигналов либо с круговой, либо с линейной поляризацией. Если антенна рассчитана на прием радиоизлучения с линейной поляризацией, то интенсивность принимаемого ею сигнала будет зависеть от угла между плоскостью наблюдения и плоскостью поляризации (см. рис. 1). Полученная зависимость позволяет получить важную информацию об электрических свойствах исследуемого грунта.

Радиорефракционные измерения

В последние годы широкое применение в космических экспериментах нашел метод, изучающий радиорефракционные свойства тропосфер и ионосфер. Одним из преимуществ этого метода является то, что для его реализации на борт космического аппарата, как правило, не надо устанавливать специальной аппаратуры.

Результатом рефракционных измерений является определение высотной зависимости коэффициента преломления радиоволн тропосферой и ионосферой планеты. Направление и скорость распространения радиоволн в атмосфере зависят от метеорологических параметров (температуры и давления), а также от химического состава газов, образующих атмосферу. С увеличением плотности молекул газа, определяемой его температурой и давлением; возрастает коэффициент преломления и уменьшается скорость распространения радиоволн.

Коэффициент преломления обычно уменьшается с ростом высоты, так же как уменьшается и температура и давление. Однако все эти параметры изменяются по разным законам.

Из результатов радиорефракционных измерений после соответствующей обработки получают данные о температуре, давлении и плотности нижней части атмосферы (тропосферы). Однако для этого используют определенные предположения, т. е. выбирают модель состояния атмосферы, чтобы по одному параметру (отношению давления к температуре, определяемому непосредственно из рефракционных измерений) определить три взаимозависимых параметра: температуру, давление и плотность. Обычно принимаются следующие предположения: атмосферный газ полагают несжимаемым и находящимся в гидростатическом равновесии. Кроме того, считают, что он хорошо перемешан воздушными потоками.

Если произвести измерения коэффициента преломления на многих высотах, то по полученной зависимости этого параметра от высоты можно, с учетом вышеизложенных предположений, получить высотные зависимости (профили) основных метеопараметров атмосферы: температуры, давления и плотности.

Для изучения ионосфер планет используют радиорефракционные измерения на одной или одновременно на двух частотах. Ионосфера — ионизированная часть верхней атмосферы планет — исследуется также и прямыми методами с помощью электронных ловушек и электростатических анализаторов. Одночастотный радиорефракционный метод более грубый и менее чувствительный по сравнению с двухчастотным. С помощью одночастотного метода изучаются главным образом дневные (освещенные Солнцем) ионосферы планет. Двухчастотные методы используются для изучения ночных ионосфер планет, ионизированных более слабо. В освещенной Солнцем части ионосферы под воздействием фотохимических процессов и солнечного ветра (потока электронов, протонов и α-частиц) вблизи планеты возникает плазма — ионизированная оболочка. Ночью фотохимические процессы в верхней атмосфере значительно ослабляются. Обтекающий планету поток солнечного ветра над ночной стороной имеет значительно меньшую концентрацию, чем над дневной стороной. Все это приводит к изменению структуры ионосферы над ночной стороной планеты по сравнению с дневной.

Поэтому ночью в атмосфере значительно уменьшается концентрация электронов и изменяется распределение концентрации электронов с высотой. Ночью же ионосфера ближе прижимается к поверхности планеты и становится менее протяженной.

Наличие свободных электронов в ионосфере приводит к преломлению и ослаблению радиоволн. Уменьшение коэффициента преломления прямо пропорционально электронной концентрации и квадрату длины волны. Поэтому исследование рефракции радиоволн позволяет определять в ней концентрацию электронов. Следует отметить, что коэффициент преломления радиоволн в ионосфере меньше 1. Тогда как коэффициент преломления в нейтральном газе тропосферы больше 1.

B связи с тем, что концентрация электронов в ионосфере изменяется не монотонно с высотой, как это обычно имеет место для метеорологических параметров тропосферы (температуры, давления и др.), решение обратной задачи — получение высотной зависимости концентрации электронов в ионосфере по результатам радиорефракционных измерений — является более сложной процедурой, чем получение высотных профилей давления, температуры и плотности для тропосферы.

Радиорефракционные измерения проводятся по следующей схеме.

На борту космического аппарата (КА), пролетающего вблизи планеты, включается передатчик, который имеет стабильную частоту излучения. На наземном пункте принимается сигнал этого передатчика и фиксируются амплитуда, частота и фаза сигнала. Измерения начинаются за несколько десятков минут до захода космического аппарата за видимый с Земли диск планеты. После выхода космического аппарата из тени планеты измерения продолжаются в течение еще нескольких десятков минут.

По мере захода космического аппарата за край видимого с Земли диска планеты (лимба) трасса распространения радиоволн между КА и наземным пунктом проходит через все более низкие слои атмосферы планеты. При этом непрерывно меняется отклонение направления распространения радиолуча от прямолинейного вследствие возрастания концентрации молекул газа на трассе распространения радиоволн. Это изменение направления распространения радиоволн (рефракция) вызывает на наземном пункте дополнительное изменение частоты принимаемого сигнала (из-за эффекта Доплера) по сравнению с изменением частоты, определяемой для данного момента времени только движением космического аппарата.

Обработка разницы изменения частоты принятого на Земле сигнала между измеренной и рассчитанной по траекторным данным позволяет с учетом высоты прохождения радиолуча в атмосфере определить коэффициент преломления радиоволн для данной высоты прохождения радиолуча над поверхностью планеты. Следует отметить, что радиолуч при заходе КА за лимб планеты вначале пронизывает верхнюю атмосферу, а затем нижнюю. Если измерения происходят в дневной атмосфере, то по времени вначале будет определен коэффициент преломления радиоволн ионосферой, а затем уже — нижней атмосферой. При выходе КА из-за лимба планеты измерения проводятся в обратном порядке: вначале исследуются более низкие слои атмосферы, а затем более высокие. Если измерения проводятся ночью, то из-за незначительности эффекта преломления радиоволн в ионосфере (при одночастотном методе радиопросвечивания) ионосфера обычно не обнаруживается.

1 2 3 4 5 6 7 8 9 10 ... 14 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название