Журнал «Вокруг Света» №02 за 2007 год
Журнал «Вокруг Света» №02 за 2007 год читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Гравитационные волны
В общей теории относительности Эйнштейна (ОТО) пространство «чувствует» присутствие массивных тел и искривляется в их окрестностях. Движение самих тел напоминает хождение по батуту: упругая поверхность прогибается сильнее всего в том месте, куда мы ставим ногу, когда же мы двигаемся дальше — поверхность распрямляется. Быстрые перемещения массивных тел порождают волны пространства, которые, преодолев тысячи, миллионы, миллиарды световых лет, вызывают едва уловимые колебания предметов на Земле. Возьмем покоящееся массивное тело, быстро переместим на некоторое расстояние в сторону. Пока тело покоилось, все объекты во Вселенной ощущали направленную к нему силу притяжения. При сдвиге направления сил меняются, но другие тела «почувствуют» это не сразу: любое возмущение распространяется не быстрее света в вакууме. Чем дальше находятся эти тела, тем больше нужно времени. Вернем массивное тело в исходное положение — вдогонку первому возмущению побежит второе, возвращающее все на свои места. Получается, что далекие тела еще не почувствовали изменений, для близких все уже вернулось в первоначальное состояние, и только в узкой области поле тяготения отличается от исходного. Эта область представляет собой сферический слой, удаляющийся от нашего источника тяготения со скоростью света. Причем возмущения в этом слое — свободные. Что бы мы ни делали с телом-источником, невозможно повлиять на ушедшее от него возмущение гравитационного поля. По сути, это и есть гравитационная волна. Вселенная совершенно прозрачна для волн гравитации. Они могли бы стать идеальным средством ее исследования, поскольку совершенно не взаимодействуют с веществом по дороге. Но по этой же причине они практически неуловимы. И все же за 40 лет безрезультатной пока охоты ученые придумали методы, которые позволяют надеяться на успех в течение ближайшего десятилетия. Для наблюдателя гравитационная волна представляет возмущение приливных сил. Проходя между двумя телами, она заставляет их еле уловимо сближаться и удаляться с определенной частотой. Соединим пружиной два грузика. Такая система имеет некоторую собственную частоту колебаний. Если она совпадет с частотой волны, возникнет резонанс, усиливающий колебания, и его, возможно, удастся зафиксировать. В реальных экспериментах используют не грузы на пружинке, а алюминиевые цилиндры длиной несколько метров и толщиной около метра, у которых имеется не одна, а целый спектр частот. В других детекторах устанавливаются массивные зеркала, расстояние между которыми измеряется лазером.
Джозеф Вебер налаживает один из первых детекторов гравитационных волн
Охота без трофеев
Несмотря на грандиозный масштаб этих явлений, зарегистрировать гравитационные волны пока никому не удалось. Теоретически ожидаемая интенсивность сигналов находится ниже порога чувствительности существующих детекторов. Хороший шанс открыть эпоху гравитационно-волновой астрономии был в феврале 1987 года при вспышке сверхновой в Большом Магеллановом Облаке — она случилась относительно близко от Земли (по астрономическим меркам, конечно). Возможно, ее сигнал и сумели бы зарегистрировать лучшие гравитационные инструменты того времени. Но, увы, звезда взорвалась в ночь на понедельник, когда работало лишь несколько не самых чувствительных приемников. Анализ их данных не обнаружил никакого достоверного гравитационного сигнала.
Создание первых резонансных детекторов связано с именем Джозефа Вебера, неутомимого энтузиаста охоты на гравитационные волны. Проект детально проработанной конструкции детектора с цилиндрическим алюминиевым резонатором он опубликовал в 1960 году, и вскоре установки были созданы «в металле». С тех пор в конструировании резонансных детекторов был достигнут существенный прогресс. Теперь все они охлаждаются до очень низких температур, чтобы избежать тепловых шумов, а новые технологии значительно повысили чувствительность датчиков, но успеха пока достичь не удалось. Впрочем, сам Вебер до самой смерти в 2000 году был уверен, что все же зарегистрировал всплески гравитационных волн.
Более эффективными должны стать сферические детекторы. Теоретически это обосновал астрофизик (известный также как писатель-фантаст) Роберт Форвард (Robert Forward) в 1975 году, всего через несколько лет после начала работы первых установок Вебера. Сферические детекторы не только чувствительнее цилиндрических, но еще и одинаково хорошо принимают сигналы с любого направления, а также позволяют определить это направление. Это как раз то, что нужно, если мы стремимся зарегистрировать хоть какой-нибудь сигнал, откуда бы он ни исходил. Подобные детекторы не строились из-за высокой технологической сложности, но сейчас уже создаются первые их прототипы.
Детекторы гравитационных волн
AURIGA
Леньяро близ Падуи, Италия
Резонансный
M = 2,23 т, Т = 0,2 К
EXPLORER
ЦЕРН, Женева, Швейцария
Резонансный
M = 2,27 т, Т = 2,6 К
NAUTILUS
Фраскати близ Рима, Италия
Резонансный
M = 2,26 т, Т = 0,13 К
ALLEGRO
Батон Руж, шт. Луизиана, США
Резонансный
M = 2,30 т, T = 4,2 K
TAMA
Токио, Япония
Лазерный
L = 300 м
GEO 600
Ганновер, Германия
Лазерный
L = 600 м
VIRGO
Пиза, Италия
Лазерный
L = 3 км
LIGO
Хенфорд, шт. Вашингтон, США
Лазерные
L = 2 км и 4 км
Ливингстон, шт. Луизиана, США
Лазерный
L = 4 км
miniGRAIL
Лейден, Голландия
Сферический
D = 65 см, М = 1,15 т
Сборка резонансного детектора AURIGA. Видны торцы трех медных защитных труб, окруженных емкостью для жидкого гелия
Включить лазеры!
Хотя гравитационные волны еще не зарегистрированы, наблюдения уже идут полным ходом. Основные надежды ученых «услышать Вселенную» возлагаются сейчас на лазерные детекторы, чей принцип действия основан на явлении интерференции. Полупрозрачное диагональное зеркало расщепляет лазерный луч на два: один, например, вдоль ожидаемого пути волны, другой — в перпендикулярном направлении. Эти лучи проходят по длинным туннелям, сотни раз отражаясь от поставленных друг напротив друга зеркал, а затем вновь объединяются с помощью полупрозрачного зеркала. При сложении электромагнитные волны могут усилить, ослабить или даже полностью погасить друг друга в зависимости от разности фаз, а эта разность зависит от длины пути, пройденного каждым лучом.
Под действием гравитационной волны сначала одно плечо нашего прибора станет чуть короче, а другое — длиннее, потом ситуация поменяется на противоположную. Наблюдения за интерференцией лучей позволяют заметить сдвиги зеркал на ничтожные доли длины волны лазерного излучения. Обнаружение этих сдвигов и будет доказательством существования гравитационных волн. Чувствительность детектора увеличивается с ростом длины плеч и числа отражений. В отличие от резонансных детекторов у лазерных нет выделенной собственной частоты колебаний. Если твердотельные детекторы в основном «слышат» колебания с частотой около 1 килогерца, то интерферометры могут регистрировать волны в широком диапазоне с частотами примерно от 10 Гц до 10 кГц.