Пять возрастов Вселенной
Пять возрастов Вселенной читать книгу онлайн
В конце двадцатого века Фред Адамс и Грег Лафлин завладели вниманием всего мира, выделив пять временных эпох. Этих авторов считают создателями долгосрочного проекта эволюции Вселенной. Масштабы их творения, охватившего полную историю космоса от его рождения до гибели, и глубина рассмотренных научных вопросов внушают благоговейный трепет. Однако «Пять возрастов Вселенной» — не просто справочник, описывающий физические процессы, которые руководили нашим прошлым и будут формировать наше будущее, это истинная эпопея. С ее помощью можно совершить фантастическое путешествие в физику вечности, не покидая Земли. Это единственная биография Вселенной, которая вам когда-либо понадобится.
Книга предназначена для широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Белый карлик с типичной массой в 0,25 массы Солнца имеет радиус в 14000 километров, что примерно в два раза больше радиуса Земли. Как ни странно, более тяжелые белые карлики имеют меньший размер. Белый карлик, по массе равный Солнцу, имеет радиус всего 8700 километров. Вот каким странным свойством обладают белые карлики: более массивные объекты имеют меньший размер, что обусловливается тем, что они состоят из вырожденного вещества. Это странное свойство диаметрально противоположно свойствам обычного вещества. Если увеличить массу камня, то он становится больше и по размеру. Если увеличивается масса белого карлика, он сжимается!
Почему же белые карлики вообще видны? Если эти объекты являются конечным результатом звездной эволюции, имеющим место по завершении процессов термоядерного синтеза, то за счет чего светят эти звезды? В этих звездных остатках содержится огромный запас тепловой энергии, оставшийся от огненного периода их жизни. Это гигантское хранилище тепла излучает энергию в космос невероятно медленно. В результате белые карлики видны на небосводе. По мере своего старения звезды становятся более холодными и излучают все слабее, весьма напоминая затухающие угли костра. Белому карлику до полного остывания требуются миллиарды лет — время, сравнимое с возрастом современной Вселенной. Когда через триллионы лет от настоящего момента Вселенная вступит в эпоху распада, белые карлики достигнут холодной температуры жидкого азота. Дальнейшему охлаждению воспрепятствует необычный внутренний источник энергии, с которым мы познакомимся в этой главе несколько позже.
Любопытное свойство белых карликов иметь больший размер при меньшей массе порождает еще один вопрос. Что происходит при последовательном уменьшении массы вырожденного звездного остатка? Этот объект просто постепенно увеличивается? Нет. Существует некоторый предел. По мере уменьшения массы и увеличения размера звезды уменьшается плотность материала. Как только плотность опускается ниже некоторого критического уровня, вещество перестает быть вырожденным и более не ведет себя столь алогичным образом. Когда масса звезды слишком мала, чтобы быть вырожденной, она ведет себя подобно обычному веществу. Таким образом, любой звездоподобный объект, чтобы быть вырожденным, должен иметь некоторую минимальную массу. Эта масса составляет примерно одну тысячную массы Солнца, что приблизительно равно массе Юпитера. Легкие объекты, масса которых не превышает одной тысячной массы Солнца, не выказывают свойств вырожденного вещества. Они ведут себя как обычное вещество и называются планетами.
С другой стороны, белые карлики не могут быть и слишком массивными. Слишком тяжелый белый карлик ожидает сильнейший взрыв. По мере возрастания массы белый карлик становится меньше и плотнее, вследствие чего для поддержания звезды в ее борьбе с противодействующей силой гравитации требуется более высокое давление. Для поддержания этого более высокого давления, в данном случае давления вырожденного электронного газа, частицы должны двигаться быстрее. Когда плотность достигает столь большого значения, что требуемая скорость частиц приближается к скорости света, у звезды начинаются крупные неприятности. Теория относительности Эйнштейна устанавливает строгий предел на любые скорости: никакие частицы не могут двигаться со скоростью, превышающей скорость света. Когда звезда достигает состояния, в котором частицы должны двигаться со скоростями, превышающими скорость света, она обречена. Гравитация побеждает давление вырожденного газа, провоцирует катастрофический коллапс, тем самым инициируя взрыв звезды — вспышку сверхновой. По величине эти эффектные вспышки можно сравнить с теми, что отмечают гибель массивных звезд (как мы уже рассказывали в предыдущей главе).
Чтобы избежать огненной кончины во вспышке сверхновой, белый карлик должен иметь массу, не превышающую 1,4 массы Солнца. Этот жизненно важный массовый масштаб именуется массой Чандрасекара, в честь выдающегося астрофизика С. Чандрасекара. В возрасте восемнадцати лет он путем вычислений нашел этот предел массы во время океанского путешествия из Индии в Великобританию, еще до начала учебы в аспирантуре Кембриджского университета в 1930-е годы. Впоследствии за свой вклад в астрофизику он получил Нобелевскую премию по физике.
Нейтронные звезды
Несмотря на невероятно высокую плотность белых карликов, нейтронная звезда является еще более плотной формой звездного вещества. Типичная плотность белого карлика превышает плотность воды «всего лишь» в миллион раз. Однако ядра атомов гораздо плотнее — примерно в квадрильон (10 15) раз плотнее воды, или в миллиард раз плотнее белого карлика. Если звезду сжать до невероятно высокой плотности атомного ядра, звездное вещество может достигнуть экзотической, но стабильной конфигурации. При этих высоких значениях плотности электроны и протоны предпочитают существовать в форме нейтронов, так что, по существу, все вещество пребывает в форме нейтронов. Эти нейтроны вырождаются, и давление, создаваемое ими, опять-таки в силу действия принципа неопределенности, сдерживает звезду от гравитационного коллапса. Нейтронная звезда, которая образуется В результате весьма напоминает отдельное атомное ядро гигантских размеров.
Непостижимо высокие плотности, необходимые для образования нейтронной звезды, естественным образом достигаются во время коллапса, который массивная звезда переживает в конце своей жизни. Центральная область звезды, дошедшей до поздней стадии эволюции, превращается в вырожденное железное ядро, которое в ходе гравитационного коллапса сжимается, инициируя вспышку сверхновой, после которой зачастую остается нейтронная звезда. Кроме того, нейтронные звезды могут образоваться в результате коллапса белых карликов. Если белый карлик медленно увеличивает свою массу, приобретая ее от звезды-спутника, ему иногда удается избежать гибели во вспышке сверхновой и сжаться, превратившись в нейтронную звезду.
По сравнению с белыми и коричневыми карликами нейтронные звезды встречаются относительно редко. Ведь они могут образоваться лишь в результате гибели звезд, масса которых при рождении более чем в восемь раз превышает массу Солнца. Эти массивные звезды представляют собой лишь высокомассовый «хвост» распределения звездных масс. Подавляющее большинство звезд слишком малы. Лишь каждая четырехсотая звезда рождается достаточно большой, чтобы взорваться и оставить после себя нейтронную звезду. Но даже несмотря на столь малые шансы, достаточно большая галактика будет содержать миллионы нейтронных звезд.
Масса типичной нейтронной звезды примерно в полтора раза превышает массу Солнца. Так же, как в случае с белыми карликами, которые существуют благодаря давлению вырожденного электронного газа, давление вырожденных нейтронов не способно поддерживать остаток звезды произвольно большой массы. Если масса становится слишком большой, гравитация побеждает давление вырожденного газа и звезда сжимается. Максимально возможная масса нейтронной звезды лежит в промежутке между двумя и тремя массами Солнца, однако точное ее значение нам не известно. При непостижимо высоких плотностях, которых достигает вещество в центре нейтронной звезды, оно приобретает весьма экзотические и несколько неопределенные свойства. Несмотря на то, что нейтронные звезды тяжелее Солнца, их радиус достаточно мал: всего десять километров. Маленький размер вкупе с большой массой говорит о невероятной плотности вещества. Кубический сантиметр вещества (размером с кусочек сахара), из которого состоит нейтронная звезда, весит почти столько же, сколько миллиард слонов!
Черные дыры
Четвертым возможным вариантом гибели звезды является ее превращение в черную дыру. После взрыва и угасания самых массивных звезд может остаться объект, масса которого превышает допустимый максимум для нейтронной звезды (значение, находящееся между двумя и тремя массами Солнца). Достаточно массивный звездный остаток не может существовать за счет давления вырожденного газа и должен коллапсировать, превратившись в черную дыру. Аналогичным образом, полностью сформировавшиеся белые карлики и нейтронные звезды могут приобрести дополнительную массу, как правило от сопутствующих им звезд, и стать слишком большими, чтобы существовать за счет давления вырожденного газа. Слишком тяжелые остатки, которые появляются в результате этого, также должны коллапсировать и иногда могут образовать черные дыры.