Черные дыры и Вселенная
Черные дыры и Вселенная читать книгу онлайн
В книге говорится о совершенно необычных небесных телах открытых учеными в последние десятилетия, о черных дырах, о рождении галактик и туманностей, об отдельных особенностях развивающейся Вселенной.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Несколько лет назад у этой пресловутой проблемы выявился еще один аспект.
В последнее время появляется все больше сторонников идеи о том, что галактики могут быть окружены огромными массивными коронами слабо светящихся объектов, которые по их свечению обнаружить крайне трудно. Это могут быть, например, звезды низкой светимости. Масса короны должна влиять на движение карликовых галактик — спутников основной галактики. Именно по этому влиянию и пытаются обнаружить в настоящее время короны галактик. Возможно, что учет этих корон существенно изменит оценку масс галактик в скоплениях и решит проблему скрытой массы. Однако в настоящее время вопрос о коронах галактик еще не решен.
Нам остается еще разобрать вопрос об экзотических кандидатах на роль скрытой массы, таких, как нейтрино, гравитационные волны, а также другие виды материи. К подобным экзотическим возможностям мы вернемся в главе «Нейтринная Вселенная».
Пока же подведем итог.
Общая масса светящейся материи недостаточна, чтобы ее тяготение затормозило расширение Вселенной и обратило его в сжатие. О скрытой массе мы пока знаем слишком мало. Если она и есть, то ее примерно столько, чтобы сделать общую плотность материи во Вселенной равной критической, может быть, чуть больше.
Вероятнее всего, нашей Вселенной предстоит расширение неограниченное или очень большое время в будущем.
Кривое пространство
Мы сейчас увидим, что вопрос о средней плотности материи во Вселенной имеет решающее значение не только для проблемы будущего Вселенной, но и для проблемы ее протяженности. Возможно, эта фраза вызовет настороженность у читателя. Как может возникнуть у материалиста вопрос о протяженности Вселенной? Разве не ясно, что пространство Вселенной продолжается во все стороны вплоть до бесконечности?
Казалось бы, любое иное мнение ведет к представлению о существовании какой-то границы материального мира, за который начинается нечто нематериальное. На протяжении длительной истории науки только бесконечно простирающееся во все стороны пространство представлялось единственно приемлемым для всякого стихийного материалиста. Аргументы, доказывающие это, были четко сформулированы еще гениальным философом древнего Рима Лукрецием Каром две тысячи лет назад. Он писал в поэме «О природе вещей»:
С тех пор подобные аргументы о бесконечности и безграничности пространства аккуратно повторялись на протяжении веков.
С сегодняшней точки зрения такое представление кажется наивным. Первый удар по старым взглядам был нанесен теоретическим открытием возможности геометрии, отличной от геометрии Эвклида, которая изучается в школе. Это было сделано великими математиками прошлого века Н. Лобачевским, Я. Бонн, Б. Риманом, К. Гауссом.
Что такое неэвклидова геометрия? Если обратиться к планиметрии, то, оказывается, понять это чрезвычайно просто: эвклидова геометрия изучает свойства геометрических фигур на плоской поверхности, неэвклидова геометрия изучает свойства фигур на искривленных поверхностях, например, на сфере или, скажем, на седлообразной поверхности. На таких искривленных поверхностях уже не может быть прямых линий и свойства геометрических фигур иные, чем на плоскости. Прямые линии заменяются здесь линиями, которые являются кратчайшими расстояниями между точками. Они называются геодезическими линиями. На сфере, например, геодезические линии — это дуги больших кругов. Примером их могут служить меридианы на поверхности Земли. На сфере мы можем чертить треугольники, стороны которых являются геодезическими, рисовать окружности, можем изучать их свойства. Все это легко себе представить. Трудности с представлением возникают, когда мы обращаемся уже не к двумерной поверхности, а к неэвклидову трехмерному пространству. В таком пространстве свойства призм, шаров и других фигур отличаются от тех, что мы изучали в школе. По аналогии с поверхностями мы можем сказать, что такое пространство искривлено. Однако эта аналогия вряд ли поможет нам представить наглядно искривленное трехмерное пространство. Мы живем в трехмерном пространстве, выпрыгнуть из него не можем (так как вне пространства ничего нет), поэтому нельзя спрашивать: «В чем изгибается наше реальное пространство?» Суть кривизны пространства заключается в изменении его геометрических свойств по сравнению со свойствами плоского пространства, где справедлива геометрия Эвклида.
Читатель, наверное, помнит из раздела о черных дырах, что общая теория относительности приводит к заключению об искривленности пространства в сильных полях тяготения, об изменении его геометрических свойств.
Когда мы обращаемся к огромным просторам Вселенной, то чем больший масштаб рассматриваем, тем больше охватываемая масса вещества и тем сильнее поле тяготения. В больших масштабах мы должны обращаться к теории Эйнштейна, должны учитывать искривление пространства.
И здесь мы сталкиваемся с удивительным обстоятельством. Чтобы понять суть нового явления, вернемся снова к искривленным двумерным поверхностям.
Возьмем кусочек плоскости. Если мы будем добавлять к нему соседние части плоскости все большего размера, то получим всю плоскость, неограниченно простирающуюся в бесконечность.
Выделим теперь на поверхности шара маленький кусочек. Если он очень мал, мы даже не заметим его искривленность. Добавим теперь к этому кусочку соседние, охватывая все большие области. Теперь искривленность уже заметна. Продолжая эту операцию, мы увидим, что наша поверхность из-за кривизны замыкается сама на себя, образуя замкнутую сферу. Нам не удалось продолжить искривленную таким образом поверхность неограниченно до бесконечности. Она замкнулась. Сфера имеет конечную площадь поверхности, но не имеет границ. Плоское существо, ползущее по сфере, никогда не встретит препятствия, края, границы. Но сфера не бесконечна!
Мы наглядно видим, что из-за замкнутости поверхность может быть безгранична, но не бесконечна.
Вернемся к трехмерному пространству. Оказывается, его искривленность может быть подобна искривленности сферы. Оно может замыкаться само на себя, оставаясь безграничным, но конечным по объему (подобно тому, как сфера конечна по площади).
Конечно, наглядное представление здесь крайне трудно. Но такое может быть. Теперь нам понятно, что аргументы в строфах Лукреция Кара направлены против ограниченности пространства каким-либо барьером, но не против конечности объема пространства — ведь пространство может быть безграничным, но конечным по объему.
Модели Вселенной, построенные А. Фридманом, показывают, что такой случай может иметь место в действительности. Для этого средняя плотность вещества во Вселенной должна быть больше критической. В этом случае пространство оказывается конечным, замкнутым; такую модель называют закрытой.
Если средняя плотность материи во Вселенной равна критической, то геометрия пространства эвклидова. Такое пространство называют плоским. Оно простирается во все стороны до бесконечности и объем его бесконечен.
Наконец, если плотность матери меньше критической, то геометрия пространства тоже искривленная. Но в этом случае геометрия подобна уже не геометрии на сфере, а геометрии на седлообразной поверхности. Это пространство так же неограниченно простирается во все стороны, не замыкается. Его объем бесконечен. Такую модель Вселенной называют открытой. Каков же наш мир?