Число и культура

На нашем литературном портале можно бесплатно читать книгу Число и культура, Степанов А. И.-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Число и культура
Название: Число и культура
Дата добавления: 16 январь 2020
Количество просмотров: 276
Читать онлайн

Число и культура читать книгу онлайн

Число и культура - читать бесплатно онлайн , автор Степанов А. И.

[ В 2002 г. на издание этой книги был получен грант Российского фонда фундаментальных исследований (РФФИ, проект 02-06-87085), и в 2004 она вышла в издательстве "Языки славянской культуры", Москва (в отредактированном виде, т.е. несколько отличном от варианта на сайте). ]

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 24 25 26 27 28 29 30 31 32 ... 387 ВПЕРЕД
Перейти на страницу:

В результате, чтобы определить количество отношений k, нужно пересчитать все возможные группы, состоящие из n элементов. Это одна из стандартных для элементарной математики процедур, и для сверки читатель может заглянуть в начало любого краткого курса комбинаторики, например, в [235] :

k = CMn,

( 2 )

где СМn – число сочетаний из M элементов по n.

Подставив формулу (2) в условие (1), получим:

M = СMn.

( 3 )

Ни один из курсов комбинаторики не обходится и без выражения для числа сочетаний [там же, с. 517] :

Сmn = M! / (M – n )! n!,

( 4 )

где знак факториала ( ! ) означает перемножение всех чисел от единицы до стоящего перед факториалом значения (например, M! = 1·2·3·…·M ).

Объединив условие (3) с формулой (4), получим уравнение:

M = M! / (M – n )! n!,

( 5 )

в котором величина n выступает в качестве параметра.

Решать данное уравнение предстоит уже в следующих разделах, а другой, для кого-то, возможно, более убедительный, вывод вынесен в Приложение 1 .

Примечания

1 Поскольку составляемой модели предстоит работать с весьма элементарным, генетически древним (см. Предисловие) срезом культуры, постольку уместна ссылка на Аристотеля, на его мнение, что целое предшествует частям, см. [25, с. 379]. Или проще: представим себе ситуацию, когда мы собираемся составить некий заведомо полный список, но еще не знаем ни из каких единиц он будет состоять, ни сколько таких единиц потребуется.

1 ... 24 25 26 27 28 29 30 31 32 ... 387 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название