О редких и рассеянных. Рассказы о металлах
О редких и рассеянных. Рассказы о металлах читать книгу онлайн
В научно-популярной форме автор рассказывает об истории открытия, свойствах и применении важнейших редких (в том числе и рассеянных) металлов.
Книга предназначена для самого широкого круга читателей: студентов, преподавателей, учащихся, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В 1895 году датчанин Юлиус Томсен выступил с теоретическим обоснованием первой точки зрения, однако противники и не думали складывать оружие. В начале XX века стало широко известно имя французского химика Жоржа Урбена. Он внес немалый вклад в изучение редкоземельных металлов, зато элемент № 72 вправе предъявить ему серьезные претензии. И вот почему.
В 1907 году Урбен открыл лютеций-тот, что занимает в таблице клетку № 71 и замыкает правый фланг в строю лантаноидов. Сам же Урбен считал, что за лютецием должен располагаться еще один редкоземельный элемент. В 1911 году химик заявил, что в рудах редких земель им открыт этот последний представитель семейства лантана, который якобы вправе занять пустующее «помещение» № 72. В честь древних племен кельтов, некогда населявших территорию Франции, Урбен назвал его кельтием.
Спустя два года молодой английский физик Генри Мозли совершил чрезвычайно важное открытие: он установил, что заряд атомного ядра, или, иными словами, порядковый номер элемента, можно определить опытным путем — на основе исследования его рентгеновских спектров. Когда Мозли подверг рентгеноспектральному анализу образец кельтия, он не обнаружил тех линий, которые должен был бы дать спектру элемент № 72. Мозли сделал вывод: «Нет никакого кельтия! Элемент Урбена — всего лишь смесь известных редких земель».
Однако Урбен не хотел примириться с потерей кельтия и поспешил объяснить малоприятные для него результаты опытов Мозли несовершенством приборов, которыми тот пользовался. А поскольку осенью 1915 года, сражаясь в рядах британского экспедиционного корпуса на Галлипольском полуострове вблизи пролива Дарданеллы, Генри Мозли погиб, возразить Урбену он уже не мог. Более того, когда в 1922 году соотечественник Урбена физик А. Довилье провел по его просьбе тщательное исследование и заметил в спектре смеси лантаноидов две едва различимые линии, характерные для элемента № 72, кельтий вновь обрел «права гражданства».
Но радость Урбена была недолгой, и «помог» ему в этом знаменитый датский физик Нильс Бор. К этому времени электронная теория строения атомов, разработанная Бором, уже вполне позволяла создать модель атома любого элемента. Согласно этой теории, атом элемента № 72 никак не мог походить на атомы редких земель, а, напротив, должен был походить на атомы элементов четвертой группы — титана и циркония.
Итак, на одной чаше весов оказались опыты и рассуждения Урбена, подкрепленные экспериментом Довилье, на другой — мнение Менделеева, рассуждения Томсена и расчеты Бора, пока еще не подтвержденные практическими работами. Так кто же прав?
Вскоре ответ был получен. Дали его венгерский химик Дьердь Хевеши и голландский физик Дирк Костер. Всецело доверяя авторитету Нильса Бора, они предприняли попытку найти элемент № 72 в минералах циркония. В 1923 году им удалось обнаружить новый элемент в норвежской циркониевой руде, а рентгеноспектральный анализ показал, что заряд его атомного ядра равен 72. По химическим же свойствам он, как и полагали Менделеев, Томсен и Бор, оказался близким аналогом циркония. Поскольку научная аргументация открытия была безупречной, в периодической системе появилось новое название — гафний. Хевеши и Костер дали ему это имя в честь древнелатинского названия Копенгагена (Гафния), где состоялось его рождение.
Ошибочность взглядов Урбена и Довилье не вызывала уже сомнений, и кельтию был вынесен приговор: «Из таблицы элементов исключить. Оставить лишь в анналах истории химии». И хотя приговор был окончательный и обжалованию не подлежал, ученые Франции, пытаясь отстоять приоритет своих соотечественников, еще четверть века именовали элемент № 72 «кельтием». Лишь в 1949 году 15-я конференция Международного союза чистой и прикладной химии навсегда «похоронила» это название.
Итак, чаша весов склонилась в пользу теории: периодический закон Менделеева и электронная модель строения атома Бора торжествовали победу. Но в таком случае, что за слабые линии видел в спектре смеси лантаноидов Довилье? Неужели, чтобы доказать явно предвзятую точку зрения Урбена, ученый пошел на сделку с совестью? Ничего подобного. Довилье действительно видел эти линии, и они действительно принадлежали элементу № 72: ведь иногда в природе гафний встречается совместно с редкоземельными металлами. Это и ввело в заблуждение французского физика.
Теперь настало время вернуться к началу нашего рассказа. Вы уже поняли, должно быть, что в петербургской Минералогической лаборатории Вернадский и Ненадкевич напали на след именно гафния, но поскольку открыть его «по всем правилам» они не успели, элемент получил свое название не в честь Азии, как предлагал Вернадский, а в честь датской столицы, как пожелали Хевеши и Костер, имевшие на то полное право.
Что же представляет собой гафний? Видимо, мало кто из читателей держал в руках этот серебристо-белый блестящий металл. В то же время запасы его в природе отнюдь не назовешь скудными: достаточно сказать, что гафния в 25 раз больше, чем серебра, и в тысячу (!) раз больше, чем золота. А уж серебро и золото, наверное, видел каждый. Чем же объяснить такой парадокс?
Во всем виновата чрезвычайная рассеянность гафния: он так распылен по белу свету, что на всей земле нет ни одного месторождения этого элемента. Словно тень, он неотступно следует за цирконием: в любом минерале циркония есть хоть немного гафния. Однако лишь циркон, в котором на каждые сто атомов циркония приходится в среднем всего один атом гафния, может быть использован промышленностью как гафниевое сырье. Но между «может быть использован» и металлическим гафнием лежит длинный и сложный технологический путь. И усложняет его не кто иной, как… цирконий.
Дело в том, что цирконий и гафний — химические близнецы. «Вот так близнецы, — вправе возразить дотошный читатель. — Ведь цирконий был открыт в 1789 году и, значит, старше гафния чуть ли не на полтора столетия. Он ему в пра-пра-прадедушки годится!» И тем не менее редкая пара элементов может продемонстрировать столь поразительное сходство химических свойств, каким обладают цирконий и гафний. До сих пор не найдено реакции, в которую вступал бы один из них и не желал бы вступать другой.
Из-за этого сходства химики долго не замечали гафний, и поэтому тот оказался значительно моложе циркония. Оно же ставит на пути технологов, стремящихся разлучить близнецов, многочисленные «препоны и рогатки». Еще не так давно для разделения циркония и гафния приходилось выполнять 500 операций растворения и кристаллизации, основанных на буквально микроскопической разнице в растворимости солей этих элементов. Нетрудно представить, во что обходилась такая процедура. Поэтому всего каких-нибудь полтора десятка лет назад никто не занимался производством гафния в примышленных масштабах: нужен он был только ученым для исследовательских целей — им хватало нескольких килограммов в год. Что же касается циркония, который всегда содержал примеси гафния, то большой бедой это не считалось: «Гафний, так гафний. Разве он мешает цирконию?»
До поры до времени гафний и в самом деле не мешал своему более маститому собрату. Цирконий обычно использовали как коррозионностойкий материал, и примеси гафния, которому борьба с коррозией тоже была вполне по плечу, не становились ложкой дегтя. Но когда цирконий получил ответственное назначение стал служить «одеждой» урановых стержней в ядерных реакторах, родство с гафнием могло губительно повлиять на его «карьеру». Дело в том, что, несмотря на необыкновенное сходство этих элементов, по одному вопросу их «мнения» принципиально расходятся. «Пропускать или не пропускать нейтроны»? — эту дилемму каждый из них решает по-своему: если цирконий практически прозрачен для нейтронов, то гафний, наоборот, жадно их поглощает. Материал, в который «одевают» уран, не должен быть препятствием для инициаторов ядерной реакции. Чистый цирконий подходит для этой цели как нельзя лучше. Но присутствие всего лишь 2 % гафния ухудшает «пропускную способность» циркония в 20 раз.