Журнал «Вокруг Света» №09 за 2008 год

На нашем литературном портале можно бесплатно читать книгу Журнал «Вокруг Света» №09 за 2008 год, Журнал Вокруг Света-- . Жанр: Прочая научная литература / Путешествия и география. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Журнал «Вокруг Света» №09 за 2008 год
Название: Журнал «Вокруг Света» №09 за 2008 год
Дата добавления: 15 январь 2020
Количество просмотров: 95
Читать онлайн

Журнал «Вокруг Света» №09 за 2008 год читать книгу онлайн

Журнал «Вокруг Света» №09 за 2008 год - читать бесплатно онлайн , автор Журнал Вокруг Света

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 23 24 25 26 27 28 29 30 31 ... 41 ВПЕРЕД
Перейти на страницу:

Журнал «Вокруг Света» №09 за 2008 год - TAG_img_cmn_2008_10_21_035_jpg925965

При виде красоты и непредсказуемой сложности фракталов трудно усомниться в том, что они существуют объективно, несмотря на то, что человеческой интуиции их не охватить. Фото: SPL/EAST NEWS

Эмпиризм

Эмпиризм как точка зрения на существование математических объектов, помимо тривиального тезиса об опытном происхождении всего знания, особо ярко проявляется в двух аспектах. Прежде всего эмпирические истины ассоциируются с интуитивно понятными математическими утверждениями, такими как «2 + 2 = 4». Именно такие утверждения Давид Гильберт назвал реальными в том смысле, что в них невозможно усомниться в силу их непосредственной связи с нашим опытным восприятием внешнего мира. Между тем высшая математика полна очень далеких от опыта и интуиции утверждений и концепций, которые в терминологии Гильберта являются идеальными в том смысле, что служат целям построения непротиворечивой сложной символической системы, в целом называемой математикой, и связывают между собой отдельные ее понятные фрагменты. Но еще важнее вопрос о том, как эмпирически обосновывать математическое знание. Легко сложить два камешка с другими двумя и получить четыре. Но что если попытаться подтвердить подобным образом математическую истину «2000 + 2000 = 4000». В силу несовершенства наших способностей мы вполне можем получить не 4000, а, скажем, 3999 или 4001, или 3997. Как истинные эмпиристы, мы в качестве ответа берем среднее и получаем дробь. Однако ведь при сложении целых чисел не может получиться дробь! Но откуда этот факт известен эмпиристу? Только из той самой арифметики, которую он пытается обосновать опытными средствами. Получается порочный круг, когда доказываемое уже предполагается в посылках.

Логика или интуиция?

Как уже было сказано, платонизм является «тайной» философией работающего математика, который должен быть уверен в реальности открываемых им сущностей. Действительно, удивительная красота и загадочность математических структур убеждают нас в том, что за пределами наших чувств существует реальность, доступная лишь интеллекту. Знаменитый математик и физик Роджер Пенроуз , убежденный платонист, говорит, что трудно избежать веры в эту реальность, рассматривая диаграммы множеств Мандельброта.

Но если существует внечувственная реальность, то каким же образом мы, обладающие скромными пятью чувствами, можем знать об этом мире? Это действительно трудный вопрос для платониста. На него давались различные ответы. Бернард Шоу как-то сказал, что мысль автора становится яснее, когда она доводится до крайности. Таким взглядом представляется точка зрения одного из величайших логиков в истории мысли Курта Гёделя . Он считал, что интуиция математика, постигающего идеальные структуры и объекты, аналогична чувственным восприятиям человека, познающего предметы материального мира. В этом смысле математическая интуиция выступает в качестве мистического инструмента познания. С другой стороны, трудно отрицать, что именно интуиция играет огромную роль в познании, и наша рациональная мысль, если прибегнуть к каламбуру, немыслима без интуиции.

Однако мистические прозрения могут дать нам истину, а могут и вводить в заблуждение. Уильям Джемс , знаменитый американский философ и психолог, приводит пример, как человек под действием веселящего газа — закиси азота — впадал в транс, в котором ему казалось, что он знает тайну мира, но, приходя в сознание, он забывал ее. Однажды ценой огромных усилий он в состоянии транса записал на бумаге эту тайну. Каково же было его удивление, когда по выходу из транса он увидел запись: «Повсюду пахнет нефтью».

Где же гарантия, что интуиция не обманывает нас в отношении тех самых математических объектов, восприятие которых она, согласно Гёделю, обеспечивает? Что служит критерием верности математического знания? Универсальный ответ дается одним словом: доказательство. Так называют дедуктивную цепочку рассуждений, убеждающую в правильности сделанного утверждения. Но постижению доказательства, как познавательному процессу, присуща определенная двойственность. С одной стороны, человек смотрит на доказательство, и — раз! — происходит чудо, часто называемое «ага, понял!». Этот момент «схватывания» идеи, уяснения сути аргумента напрямую связан с интуитивным постижением чужой мысли, заключенной в символы или утверждения. С другой стороны, чтобы достичь этого «момента истины», нужна тренировка в области математического мышления. Необходимо освоить элементарную логику рассуждения и, как говорят философы, признавать нормы рационального мышления, которые и позволяют людям понимать друг друга. Какая бы интуиция и озарение ни сопутствовали открытию математиком новой истины или нового объекта, для того чтобы передать свое знание или убедить в его правильности, необходимы общий язык и общие нормы, которые реализуются в доказательствах.

Журнал «Вокруг Света» №09 за 2008 год - TAG_img_cmn_2008_10_21_036_jpg307105

Немецкий математик Давид Гильберт (1862—1943) выдвинул масштабную программу обоснования математики путем ее полной формализации на основе теории множеств (на фото слева). Голландец Лёйтзен Эгберт Ян Брауэр (1881—1966) выступал с критикой этого подхода ввиду присущих наивной канторовской теории множеств антиномий, а главное — контринтуитивности рассуждений, включающих бесконечные множества. Фото: SPL/EAST NEWS

Математическая «схизма»

Хотя в разных областях человеческой деятельности нормы рационального мышления могут варьироваться, во всем этом разнообразии существует «сердцевина», олицетворяемая логикой. Аргументация убеждает, только если в ней соблюдены правила логики. Если же человек от них отступает, он оказывается вне профессионального сообщества. Безусловно, сами эти нормы изменяются по ходу времени, и это напрямую относится к представлениям о математическом доказательстве. На протяжении всей истории математики менялись требования к строгости доказательств. Интуитивно понятные доказательства теорем в XVII—XVIII веках постепенно сменились строгими формальными выкладками. При этом внутри профессионального сообщества стали нарастать разногласия относительно природы и надежности доказательств. В итоге к началу XX века в математическом сообществе возникла «схизма», противоположные лагеря которой возглавили немецкий ученый, «король математики» Давид Гильберт и голландский математик Лёйтзен Брауэр .

Спор шел о допустимости использования в доказательствах бесконечности. Брауэр и его сторонники, полагая интуицию базисом всего математического знания и исходя из невозможности интуитивного представления бесконечности, отвергли те части математики, в которых признается существование бесконечных объектов как чего-то данного, завершенного, то есть так называемой актуальной бесконечности. Ключевым моментом полемики стал вопрос, допустимо ли использовать в математических рассуждениях один из основных принципов логики — закон исключенного третьего (который гласит, что из двух отрицающих друг друга высказываний одно непременно должно быть истинным). Этот закон широко используется в классической математике, но ограничивается в интуиционистской, когда речь заходит о бесконечных объектах. Таким образом, даже логика самого строгого вида аргументации — математического доказательства — может подвергаться сомнению.

Подсказки богини Наматжири

Иногда такие сомнения находят свое интереснейшее выражение. История индийского математика Сринивасы Рамануджана (1887—1920) показывает, что природа человеческого гения чрезвычайно разнообразна, даже там, где присутствуют жесткие нормы мышления. Стараниями известного английского математика Годфри Харди способный молодой человек из Индии попал в Англию, где проявил себя в качестве одной из самых примечательных фигур в теории чисел. Его результаты были неожиданными и красивыми, но по характеру творчества он радикально отличался от других математиков. Он не знал, что такое доказательство. Его результаты были итогом чисто интуитивного прозрения и часто приходили во сне: ему диктовала их богиня Наматжири. Поразительно было как то, что большинство его формул оказывались верными, так и то, что иногда богиня ошибалась. При этом формулы были воистину красивыми и загадочными.

1 ... 23 24 25 26 27 28 29 30 31 ... 41 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название