-->

Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]

На нашем литературном портале можно бесплатно читать книгу Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.], Виноградов С. Н.-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]
Название: Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]
Дата добавления: 15 январь 2020
Количество просмотров: 281
Читать онлайн

Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.] читать книгу онлайн

Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.] - читать бесплатно онлайн , автор Виноградов С. Н.

ЦК ВКП(б) в постановлении «О преподавании логики и психологии в средней школе» от 3 декабря 1946 года признал совершенно ненормальным, что в средних школах не изучается логика и психология, и счел необходимым ввести в течение 4 лет, начиная с 1947/48 учебного года, преподавание этих предметов во всех школах Советского Союза.

В 1959 году преподавание логики в средней школе отменили. А зря.

Это тот самый учебник для средней школы 1954 года издания.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 23 24 25 26 27 28 29 30 31 ... 40 ВПЕРЕД
Перейти на страницу:

Модус ЕАЕ. А. Правые социалисты (S) поддерживают агрессоров (М).

------------------------------------

Е. Правые социалисты (S) не являются сторонниками мира и демократии (Р).

3-я фигура. А. Росянка (M) питается насекомыми (Р).

Модус ААI. А. Росянка (М) — растение (S).

------------------------------------

I. Некоторые растения (S) питаются насекомыми (Р).

§ 8. Характеристика фигур

Состав модусов каждой фигуры определяет её особые правила, а именно:

1-я фигура. Большая посылка должна быть обязательно общей, а меньшая — утвердительной.

Возьмём такое умозаключение, где меньшая посылка отрицательная:

А. Во всех городах за полярным кругом бывают белые ночи.

Е. Ленинград не находится за полярным кругом.

-----------------------------------

Е. В Ленинграде не бывает белых ночей.

Но в Ленинграде бывают белые ночи. Вывод в нашем примере получился неправильный, так как оказалось нарушенным правило первой фигуры (ср. третье правило силлогизма).

2-я фигура. Большая посылка должна быть обязательно общей, а одна из посылок — отрицательной.

Из этого следует, что заключение по 2-й фигуре всегда отрицательное.

Согласно этому правилу, невозможно было бы такое умозаключение:

Все металлы проводят электричество.

Данное вещество проводит электричество.

--------------------------------

Данное вещество — металл.

Такой силлогизм был бы неверным, так как в нём нарушено правило второй фигуры (ср. второе правило силлогизма).

3-я фигура. Меньшая посылка должна быть обязательно утвердительной, а заключение — частным.

Таковы правила фигур силлогизма. Эти правила фигур являются применением к фигурам общих правил силлогизма.

§ 9. Познавательное значение силлогизма

Фигуры и модусы силлогизма правильны постольку, поскольку они отражают реально существующие отношения вещей. Всякое отклонение от правильных форм именно потому и становится неправильным, что оно не отражает действительности.

Отсюда вытекает познавательное значение силлогизма как формы мышления: правильные модусы силлогизма, являясь отражением реально существующих отношений, дают нам возможность познать эти реальные отношения.

Возьмём, например, модус AЕЕ. Он отражает простой факт действительности: если все предметы данного класса обладают каким-то определённым признаком, а интересующий нас предмет этим признаком не обладает, то, значит, интересующий нас предмет не входит в число предметов данного класса.

Например: если всякая живая клетка содержит в себе белок, а кристаллы гипса не содержат белка, то, следовательно, они не входят в число живых клеток.

Это простое отношение вещей запечатлелось в нашем сознании в форме модуса AЕЕ. Но такое же происхождение имеют и все другие модусы силлогизма, которые также отражают те или другие отношения вещей.

Это и даёт нам возможность в форме того или другого модуса силлогизма познавать действительность.

Так, модусами первой фигуры мы пользуемся в тех случаях, когда нам надо единичный или частный случай подвести под общее положение или же из более общего вывести менее общее.

Например, мы знаем природу и свойства гремучего газа, и если во время опытов с водородом в пробирке получился взрыв, то мы этот частный случай подводим под наше общее знание о смесях водорода и делаем заключение: взорвался гремучий газ.

Модусами второй фигуры пользуются в тех случаях, когда хотят доказать, что данное явление не подходит под общее положение.

Например, защитник, выступая с возражениями обвинителю, строит свои доказательства часто по второй фигуре. Врач, стремясь опровергнуть ошибочный диагноз, рассуждает по второй фигуре. Например, врач не обнаруживает у пациента признаков предполагаемой болезни, на основании чего делает вывод об отсутствии у этого человека данной болезни.

Третья фигура применяется главным образом тогда, когда надо доказать ложность какого-либо общего положения, причём доказательство производится с помощью указания на частные случаи, которые противоречат опровергаемому общему положению.

Например, общее положение «все тела от нагревания расширяются» можно опровергнуть рассуждением по третьей фигуре: вода — тело, вода при нагревании от 0 до 4 градусов сжимается; следовательно, есть тело, которое при нагревании от 0 до 4 градусов сжимается.

§ 10. Условно-категорический силлогизм

Условный силлогизм — это такой силлогизм, в котором, по крайней мере, одна из посылок является условным суждением.

Если в условном силлогизме одна из посылок — условное суждение, а другая — категорическое, то такой силлогизм называется условно-категорическим.

Существуют две формы условно-категорического силлогизма:

1-я форма (утверждающая).

Общая формула её следующая:

Если S есть Р, то S1 есть Р1.

S, есть Р.

---------------------

Следовательно, S1 есть P1.

В умозаключениях по 1-й форме меньшая посылка утверждает основание. От утверждения основания мы переходим (в заключении) к утверждению следствия. Например:

Если рожь пожелтела, то её необходимо жать.

Рожь пожелтела.

--------------------------

Следовательно, её необходимо жать.

В качестве первой посылки могут быть различные виды условных суждений (см. стр. 59). Если в основании содержится отрицание, то и меньшая посылка должна быть отрицательной; только в таком случае в заключении будет утверждаться следствие.

Например:

Если топливо не просушить, то оно не даст хорошей калорийности.

Это топливо не просушено.

--------------------------------

Следовательно, это топливо не даст хорошей калорийности.

В этом примере, как и в предыдущем, меньшая посылка утверждает основание, а в заключении утверждается следствие.

2-я форма (отрицающая).

Общая формула её следующая:

Если S есть Р, то S1 есть Р1.

S1 не есть Р1.

---------------------

Следовательно, S не есть Р.

В умозаключениях по 2-й форме меньшая посылка отрицает следствие. От отрицания следствия мы переходим (в заключении) к отрицанию основания.

Например:

Если солнце находится в зените, то тени становятся наиболее короткими.

Тени не стали наиболее короткими.

-----------------------------------------

Следовательно, солнце не находится в зените.

Как и в первой форме, здесь также могут быть различные виды условных суждений в качестве первой посылки.

Например:

Если гроза проходит далеко, то грома не слышно.

Гром слышно.

--------------------------

Следовательно, гроза проходит недалеко.

1 ... 23 24 25 26 27 28 29 30 31 ... 40 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название