-->

Загадки мироздания

На нашем литературном портале можно бесплатно читать книгу Загадки мироздания, Азимов Айзек-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Загадки мироздания
Название: Загадки мироздания
Дата добавления: 15 январь 2020
Количество просмотров: 169
Читать онлайн

Загадки мироздания читать книгу онлайн

Загадки мироздания - читать бесплатно онлайн , автор Азимов Айзек

Знаменитый писатель-фантаст, ученый с мировым именем, великий популяризатор науки, автор множества научно-популярных, фантастических, детективных, исторических и юмористических изданий приглашает вас в мир загадок прошлого, настоящего и будущего.

В этой книге Азимов рассказывает об удивительных явлениях и фактах — известных и малоизвестных, открытиях, ошибках и гениальных догадках ученых. Просто он рассказывает о сложном — белках и ДНК, гормонах и ферментах, лазерах и космических кораблях, теории относительности и истоках Вселенной. Каким должен быть марсианин? Что изменится в повседневной жизни американца 1990 года? Какие проблемы будут угрожать нашей планете и цивилизации в ближайшие века? Возможно ли вернуться назад во времени? Как будет выглядеть всемирная выставка 2014 года? Сможет ли человечество дотянуться до звезд?…

Он не верит в инопланетян в летающих тарелках, но предполагает, какими будут колонии на Луне, когда станут осваивать Марс и какова во всем этом роль научной фантастики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 22 23 24 25 26 27 28 29 30 ... 81 ВПЕРЕД
Перейти на страницу:

В 1964 году Мюриэл Роджер из Университета Рокфеллера объявил о том, что ему удалось перенести отдельный ген из одной бактериальной клетки в другую. В результате такой генетической трансплантации клетка-реципиент обрела способность вырабатывать новый для себя фермент. Так что идея генетического переноса в принципе не является нереализуемой.

Теперь предположим, что в некоей оплодотворенной яйцеклетке имеется не один, а несколько поврежденных генов, слишком много, чтобы из нее можно было получить полноценного человека. Но допустим, ни один из этих дефектных генов не относится к работе, скажем, сердца или почек. Нельзя ли взять отдельно здоровые гены и вырастить на их основе именно эти органы для будущих трансплантаций?

Звучит дико, но наука развивается страшно быстрыми темпами. Огромного, немыслимого прогресса удается достичь всего за несколько десятилетий. Шестьдесят лет спустя после неуклюжего полета аппарата братьев Райт уже имелись реактивные самолеты, способные облететь весь земной шар. Сорок лет спустя после того, как Роберт Годдард поднял свою первую ракету на жидком топливе на высоту 50 метров, запущенные человеком ракеты летели уже дальше Марса.

Так кто сейчас может сказать, каким будет уровень биологической инженерии к 2000 году, до которого многие из нас к тому же и не доживут?

Конечно, возможности, связанные с биоинженерными успехами, не могут не вызывать и опасений. Хватит ли наших знаний для того, чтобы играть с жизнью и смертью, подобно Богу?

Может, и не хватит. Но человеку рисковать не впервой. Он уже рискнул уподобиться Богу, когда впервые начал с помощью силы своего разума изменять окружающий мир. Одомашнив животных, изобретя земледелие и начав строить города, человек создал цивилизацию. Это коренным образом изменило все существование человека. Да, эти изменения привели к возникновению проблем, которых раньше не было, но в целом жизнь изменилась к лучшему и возвращения назад к варварству не хочет никто.

И потом, когда люди создали паровую машину, приручили электрический ток, придумали двигатель внутреннего сгорания и разработали атомную бомбу, получение каждой из этих технологий все дальше отдаляло человека от исходного положения. При этом возникли просто огромные проблемы, но, опять же, мало кто захочет вернуться обратно в доиндустриальную эпоху.

Несомненно, эра биологической инженерии принесет в нашу жизнь еще больше принципиальных перемен и новых проблем, но примеры прошлого показывают, что человеку свойственно справляться с такими изменениями, получая от них гораздо больше благ, чем рисков.

Кроме того, если суть этих перемен будет в том, что человек возьмется улучшать себя самого, то и с возникающими по ходу проблемами управляться будет уже человек улучшенный.

Каждое предыдущее усовершенствование будет облегчать работу по следующему, и, двигаясь по этой восходящей спирали, человек может наконец достичь желанной чистоты и окунуться в солнечное будущее безграничных возможностей.

Раздел II

О НЕЖИВОМ

Глава 10

ГОРЯЩЕЕ ВЕЩЕСТВО

С самого момента своего открытия горючий газ водород произвел на человечество революционное воздействие. С его помощью были повержены старые теории и установлены новые. Он уже два раза вел людей к звездам, а теперь этот газ предоставляет нам возможность получить безграничные запасы энергии, необходимой для будущих потребностей человека.

История водорода началась с пламени, поскольку в XVII веке первые химики получили при реакции железа с кислотой новый газ, который, как оказалось, взрывается при нагревании. Они назвали его «горючим газом».

Английский химик Генри Кавендиш, занявшийся изучением нового вещества в 1766 году, обнаружил, что тот способен порождать нечто более примечательное, чем пламя. Оказалось, что при сжигании этого газа и соединении его с чем-то, содержащимся в воздухе (как выяснилось позже — с кислородом), образуются капли жидкости, которая представляет собой не что иное, как воду. Вода, рождающаяся в пламени!

Мир химии был потрясен. Ведь тысячелетиями считалось, что вода — это первоэлемент, что ее невозможно получить из сочетания каких-то более простых элементов. Теперь же выходило, что вода — это продукт сочетания двух газов!

Горючему газу дали новое имя — «водород». Образование воды из водорода стало одним из козырей, позволивших французскому химику Антуану Лорану Лавуазье смести старые теории и заложить вместо них основы современной химии.

Но этим необычные свойства водорода не исчерпывались. Водород оказался не только горючим, не только источником воды, но и крайне легким по весу. Кубический метр водорода весит всего 90 граммов (для сравнения — кубический метр воздуха весит более чем в десять раз больше — 1 килограмм 300 граммов). На самом деле водород — вообще самое легкое вещество на свете.

В 1783 году французы братья Монгольфье наполнили горячим воздухом шелковый мешок и отпустили его вверх. Горячий воздух легче, чем холодный, поэтому получившийся шар поплыл по воздуху, как бревно — по реке. Когда же горячий воздух остыл, шар опустился.

Но зачем использовать горячий воздух, если новооткрытый газ, водород, оказался гораздо легче, чем любой воздух, даже в холодном состоянии? Его подъемная сила гораздо больше, и он вполне может нести гондолу по воздуху — вместе с сидящими в ней людьми.

В начале XIX века по всей Европе и Америке в воздух поднимались наполненные водородом воздушные шары. Для кого-то это были игрушки, захватывающее развлечение. Для ученых же это оказалось первой возможностью изучать небесные высоты — первым шагом на пути к звездам.

Кроме того, это изобретение можно было бы использовать и для коммерческого воздухоплавания, оставалось только обрести независимость от ветра. В 1900 году немецкий изобретатель граф фон Цеппелин построил воздушный шар сигаровидной формы с алюминиевым каркасом и снабдил его пропеллером. Так был изобретен дирижабль, и люди впервые в массовом порядке отправились покорять высоту на крыльях водорода.

Но нельзя забывать, что водород все же крайне огнеопасен. Огромный шар, наполненный водородом, всегда представляет собой хранилище взрывчатки, — и любой удар по такой цели будет безошибочен. А нанести такой удар может что угодно, например искра статического электричества. Так, в 1937 году вспыхнула наполненная водородом оболочка огромного дирижабля «Гинденбург», и весь корабль был уничтожен в течение нескольких минут.

Впрочем, к тому моменту дирижабли и так уже отживали свое. Ясно стало, что будущее — за летательными аппаратами тяжелее воздуха.

Так что похоже, что водороду найдется использование только на земле. Химики применяют его во множестве «восстановительных» реакций, например для превращения несъедобных овощных масел в полезные твердые жиры. А горючесть водорода нашла свое применение в водородных горелках, которые режут сталь, как масло.

Что же еще?

Несмотря ни на что, водород не сдался. Пламя горящего водорода заставило дирижабль рухнуть вниз, но оно же заставляет ракету лететь вверх! Конец эры дирижаблей совпал с началом эры ракет.

Обычный самолет может маневрировать только в воздухе, где содержится достаточное количество необходимого для сжигания топлива кислорода. Кроме того, воздух должен быть еще и достаточно плотен, чтобы поддерживать вес самой машины.

А вот ракета несет на борту и топливо, и кислород. Когда эти две составляющие объединяются, происходит взрыв и раскаленные газы вырываются из сопел вниз. По закону действия или противодействия, известному также как третий закон Ньютона в честь знаменитого английского ученого, открывшего этот закон в 1683 году, раз часть массы ракеты (газы) вылетает вниз, то вся остальная ракета должна лететь вверх, в противоположном направлении.

По мере того как выхлопные газы вылетают вниз, ракета движется вверх все быстрее. В конце концов она выйдет за пределы атмосферы (которая ей не нужна ни для поддержки, ни в качестве источника кислорода) и выйдет в космос.

1 ... 22 23 24 25 26 27 28 29 30 ... 81 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название