-->

Вид с высоты

На нашем литературном портале можно бесплатно читать книгу Вид с высоты, Азимов Айзек-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вид с высоты
Название: Вид с высоты
Дата добавления: 15 январь 2020
Количество просмотров: 114
Читать онлайн

Вид с высоты читать книгу онлайн

Вид с высоты - читать бесплатно онлайн , автор Азимов Айзек

Сборник эссе, речь в которых идет сразу о нескольких областях науки — биологии, химии, физики, астрономии. Автор — писатель-фантаст, биохимик, великолепно эрудированный, прекрасно владеющий языком, чуть скептично — насмешливо, но вместе с тем тактично ведет непринужденный разговор со свободным выбором тем.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 22 23 24 25 26 27 28 29 30 ... 54 ВПЕРЕД
Перейти на страницу:

В 1738 году французские ученые установили по пушке на двух холмах, расстояние между которыми было 27 километров. Стреляя из пушки на одном холме, они засекали промежуток между вспышкой и звуком с другого холма; затем, стреляя из пушки на другом холме, засекали время с первого холма (это делалось, чтобы учесть поправку на ветер). Таким способом впервые была измерена скорость звука. Сегодня принято считать, что звук распространяется со скоростью 331 метр в секунду при 0° Цельсия, или примерно 1200 километров в час.

Скорость распространения звука зависит от упругости воздуха, то есть от естественной быстроты, с которой могут раскачиваться вперед-назад молекулы воздуха. Упругость повышается с температурой, поэтому увеличивается и скорость распространения звука — на каждый градус повышения температуры примерно по полметра в секунду.

Нота «до» первой октавы скрипичного ключа (на рояле — середина клавиатуры) имеет частоту 264 колебания в секунду; следовательно, длина волны звука среднего «до» равна 331/264, или 1,25 метра. Частота увеличивается с высотой звука (это открыли пифагорейцы), а длина волны соответственно уменьшается. Чем ниже звук, тем меньше его частота и больше длина волны.

Самая низкая нота, которую можно взять на рояле, имеет частоту 27,5 колебания в секунду, а самая высокая — 4224 колебания в секунду. Следовательно, длина одной волны составляет 331/27,5 = 12 метров, а длина другой волны — 331/4224 = 0,076 метра (то есть 7,6 сантиметра).

Даже диапазон рояля, очень широкий, не охватывает всех звуков, воспринимаемых человеческим ухом. Человек с нормальным слухом способен слышать самые низкие звуки, до 15 колебаний в секунду, и чрезвычайно высокие звуки, в зрелом возрасте выше 15 000 колебаний в секунду, а в детстве — даже вплоть до 20 000 колебаний в секунду. Этот максимальный интервал охватывает более десяти октав (каждую следующую октаву составляют звуки удвоенной частоты), тогда как наше зрение чувствительно к световым лучам в пределах одной-единственной октавы. В пересчете на длины волн наше ухо улавливает звуки в диапазоне от 22 метров до 2 сантиметров.

Но даже самый высокий звук, доступный нашему слуху, имеет длину волны в 20 000 раз большую, чем длина волны красного света, так что мы вполне имеем право ожидать, что при встрече с препятствиями звук и свет будут вести себя совершенно по-разному.

И все же, чем меньше длина волны (то есть чем выше звук), тем более успешно препятствие определенного размера остановит и отразит звуковую волну. Дерево должно отражать 2-сантиметровые звуковые волны; но оно не окажет никакого воздействия на 22-метровую волну.

Тогда почему бы не подняться вверх по шкале частот и не извлечь какую-либо пользу из звуков столь высоких, что человеческое ухо их уже не воспринимает (это уже ультразвуки)? Существование таких неслышимых звуков можно легко обнаружить даже без специальных приборов. Можно, скажем, сделать ультразвуковой свисток, сигналов которого никто из людей не услышит. А служебные собаки, у которых диапазон воспринимаемых звуков больше, чем у человека, будут подчиняться командам, подаваемым таким свистком.

Получение ультразвуков в широком масштабе впервые стало возможным в результате открытия, сделанного в 1880 году братьями Пьером и Жаком Кюри. (Блестящий ученый Пьер Кюри женился, кстати говоря, на Марии Склодовской, знаменитой мадам Кюри, еще более блестящей звезде ученого мира.)

Братья Кюри обнаружили, что если пластинки, вырезанные определенным образом из кристаллов кварца, очень сильно сжимать (так, что они даже слегка деформируются), то на их противоположных гранях возникают небольшие электрические заряды. Это явление было названо пьезоэлектричеством (от греческого слова «пьезо» — давление). Кюри также открыли и обратный эффект: если к противоположным граням кристалла приделать плоские электроды и подать на них электрическое напряжение, то кристалл начнет деформироваться [6]. Отсюда стало ясно, что если электрическое поле на гранях кристалла быстро увеличивать и уменьшать, то кристалл будет с той же частотой сжиматься и распрямляться, создавая таким образом звуковые колебания соответствующей частоты. А если взять достаточно большую частоту колебаний, то получится даже ультразвуковая волна.

После изобретения радиолампы оказалось практически возможным создавать электрическое напряжение, меняющееся с ультразвуковой частотой. Французскому физику Полю Ланжевену удалось получить мощные ультразвуковые волны уже в 1917 году. Шла первая мировая война, и он сразу же попытался использовать то, что такие короткие волны способны более эффективно отражаться сравнительно небольшими препятствиями. Он применил ультразвук для обнаружения подводных лодок. Расстояние до объекта можно определить по промежутку времени, протекшему с момента излучения ультразвукового импульса до момента приема эха, и по скорости звука в воде (которая более чем вчетверо превышает скорость звука в воздухе благодаря большой упругости воды).

После первой мировой войны этот принцип использовался в мирных целях — для обнаружения косяков рыб и айсбергов, полностью погрузившихся под воду, для определения глубины океана, рельефа морского дна и т. д. Приборы, основанные на этом принципе, применялись и во время второй мировой войны (они назывались «сонар»).

* * *

Но, по-видимому, «сонар» — это одна из областей, в которых прочие виды животных опередили человечество на много миллионов лет.

Например, летучая мышь, этот умнейший пилот, искусно летает по весьма причудливому курсу. В мгновение ока меняя направление полета, летучая мышь ловит крошечных насекомых и легко избегает столкновения с такими небольшими препятствиями, как ветки. Это просто поразительно, если учесть, что она летает в сумерках.

В 1793 году итальянский ученый Ладзаро Спалланцани обнаружил, что летучие мыши могут ловить добычу и избегать препятствий в полной темноте, и даже если их ослепить. Однако они теряли эту способность, если их лишали слуха.

В начале 40-х годов нашего столетия американский физик Дж. Пирс изобрел прибор, позволяющий улавливать чрезвычайно слабые ультразвуки. И тогда сразу выяснилось, что летучие мыши непрестанно издают не только слабые писки, которые мы слышим, но и ультразвуки с частотой более 150 000 колебаний в секунду и, следовательно, с длиной волны менее 2 миллиметров (их мы не слышим).

Такие короткие волны прекрасно отражаются от насекомых и веток. Между вскриками летучие мыши улавливают эхо и выбирают дальнейший путь соответственно.

Точно так же поступают дельфины, обнаруживая, правда, не насекомых, а рыбу. Так как их жертвы побольше, дельфины не нуждаются в звуке столь высокой частоты и столь малой длины волны. Они действительно пользуются ультразвуками, но издают и звуки, хорошо слышимые человеческим ухом, — люди обычно сравнивают такие звуки со «скрипом».

Опыты, проведенные в 1955 году в Вудс Хол (штат Массачусетс), показали, что, когда дельфины «поскрипывают», они могут находить кусочки пищи размерами около 15 сантиметров даже в полной темноте. (Этими способностями дельфинов заинтересовался военно-морской флот в связи с попытками усовершенствовать существующие системы ультразвуковой локации.)

Вот в этом и заключается использование дельфинами звука не только для общения (я говорил об этом в начале главы). Жизнь в море так шумна, по всей вероятности, именно из-за необходимости добывать пищу и избегать врагов в условиях, когда света очень мало; поэтому зрение здесь гораздо менее полезно, чем на суше.

Но теперь возникает еще один вопрос. Если даже допустить, что звук у дельфинов служит прежде всего целям звуковой локации, то им достаточно было бы самого простого звукового устройства (такого, например, как у летучих мышей). Коль скоро дельфины развили очень сложный аппарат, позволяющий издавать самые разнообразные звуки, то не разумно ли предположить, что звук им служит и для других целей, требующих такого совершенства?

1 ... 22 23 24 25 26 27 28 29 30 ... 54 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название