Парадоксы науки
Парадоксы науки читать книгу онлайн
Наука — одно из высших проявлений человеческих возможностей, показатель того, на что вообще способен наш интеллект. Мы люди, и человеческое в нас — неистребимая радость познания. Она влечет все дальше вперед по неизведанным дорогам открытий.
Книга рассказывает о парадоксальных состояниях науки, возникающих в ситуации когда обнаруживается неудовольствие старым знанием, а новое еще не настолько доказало свою жизненность, чтобы прочно войти в сознание большинства. Освещены приемы, которые привлекаются учеными для построения парадоксальных теорий, дается расшифровка некоторых механизмов творчества.
Автор раскрывает назначение парадокса как источника новых приобретений в знаниях, его роль в выдвижении плодотворных идей. Парадоксы поучительны. Каждый из них повествует о каких-то неожиданных поворотах науки в постановке проблем, методах решения, судьбах ее открытий.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А теперь посмотрим, каким же образом достигается «бесконтролье» мысли, при каких условиях удается освободиться от власти сознания. Обратимся к свидетельствам творцов науки, прошедших долгий путь инкубационных страданий.
Однажды А. Пуанкаре принял приглашение участвовать в геологической конференции. Пришлось ехать в другой город, а это заставило на время забыть о математической работе, которой он тогда занимался (то были фуксовые функции). Но вот участники достигли одного из пунктов путешествия, города Кутанс, и собирались ехать дальше. Им подали карету. В тот момент, когда я поставил ногу на ступеньку экипажа, — пишет А. Пуанкаре, — мне пришла идея, хотя в предшествующих моих мыслях не было ничего такого, что могло бы подготовить ее появление". Это повторилось и в другой раз. Ученый продолжал исследовать те же фуксовские функции. На одной споткнулся и долго не мог справиться. Вскоре пришлось поехать по делам службы в Мопт-Валери, где был занят не относящимися к предмету его внимания заботами. Как-то, переходя улицу, он вдруг понял, что мучившая его задача решается. Между тем до этого момента думал он совсем о другом.
Как видим, идеи являлись А, Пуанкаре действительно нежданно-негаданно. Во всяком случае, с его стороны не было предпринято каких-либо стараний найти решение именно сейчас. Оно приходило как-то само собой, падая к ногам ученого, подобно созревшему яблоку.
А. Пуанкаре называет удобным для открытий время путешествий, деловых поездок, визитов, то есть состояния отвлеченности от мучивших его проблем. Столь же плодотворными почитаются отпуска, туристские походы, а чаще всего — часы прогулки.
ИНКУБАЦИЯ ПРОДОЛЖАЕТСЯ. «НОГИ — КОЛЕСА МЫСЛИ»
Казалось бы, прогулки и прочее — не для научных изысканий. Это не время творить. Между тем имеется слишком много «показаний» ученых в пользу именно такой «организации» условий для поиска. Так, на прогулке по окраинам Глазго пришла Д. Уатту в 1765 году идея паровой машины. И именно когда он подошел к дому пастуха. Здесь же у него сложилось полное представление о том, что надо сделать. А до этого Д. Уатт основательно повозился с ремонтом несовершенной паровой установки соотечественника Т. Ньюкомена. Он видел ее изъяны, но не знал, как их преодолеть. На прогулке же явилась «отцу русской авиации» Н. Жуковскому знаменитая формула подъемной силы крыла, а В. Гамильтону — решение проблемы гиперкомплексных чисел. Эта история вообще интересна.
Известному английскому физику и математику В. Гамильтону долго не давало покоя одно семейство им же введенных в научный обиход новых чисел-триплетов.
Он представлял их в виде точек трехмерного пространства и мучился над тем, каким образом достичь, чтобы поворот в этом пространстве определял способ умножения названных чисел. Аналогично тому же проводилось умножение комплексных чисел, которое отображалось в виде поворота, но только на плоскости, то есть в двухмерном пространстве.
Задача поглотила ученого сполна, но, увы, не поддавалась решению. Родные участливо следили за развитием сюжета, разделяя огорчения главы семьи. Его появление за общим столом обычно вызывало один и тот же вопрос: «А что, папа, можешь ты уже умножать триплеты?» Смущаясь, папа отвечал, что умеет пока только складывать и вычитать.
И все же он нашел то, что искал. Это произошло во время прогулки с женой вдоль канала в Дублине, где он жил. Здесь же, на месте «преступления», В. Гамильтон достал нож и вырезал на перилах моста формулу ответа. Прохожие, верно, немало удивлялись столь несерьезному поведению ученого.
А для некоторых исследователей прогулки стали своего рода неотъемлемым сопровождением поиска.
Академик А. Александров рассказывает об одном из крупнейших геометров мира, А. Погорелове, что свои лучшие работы он сделал, когда шел пешком из дома до института и обратно. Ежедневно 15 километров…
Так же и Ж. Адамар считает, что, за исключением ночей, когда он не мог уснуть, все, что он нашел, он нашел, расхаживая по комнате. Наверное, не случайно родилось выражение: «Ноги — колеса мысли».
Конечно, в часы прогулок, во время расхаживания по комнате и т. п. работа мозга характеризуется и периодами (притом, очевидно, немалыми) сознательного обдумывания проблемы. И все же основная нагрузка ложится на интуитивные процессы, на те счастливые мгновения, когда исследователь «отпускал» проблему и был занят другим. Да и, кроме того, в пути какие уж систематические исследования. Тут и думается-то подругому, не так, как за рабочим столом, а скорее както клочками, зигзагообразно.
Об этом мы еще скажем. Здесь же важно отметить другое: открытие приходит, так сказать, в «нейтральное» время, в часы, не посвященные специально открытиям, и в этом, по-видимому, скрыт секрет творчества.
Подоплека такова, что все попытки сознательного решения, решения под контролем "я", обязательно поведут исследователя дорогой испытанных методов и концепций, то есть туда, где открытий быть не может.
Тем и хороши прогулки и другие подобные занятия, что сознание отключено от активного вмешательства в процесс, а поиск отдан на волю непреднамеренных, отходящих от норм науки сцеплений идей. Это минуты, когда исследователь как будто и не помышлял о задаче, то есть сознательно не думал, казалось, не думал, но работа продолжалась, только шла она по нешаблонному пути.
Есть факты, которые еще более выпукло оттеняют неосознанность этой промежуточной (между постановкой проблемы и ее решением) деятельности мысли.
Так, истории научного творчества известны открытия, которые удались даже и не на прогулке, а, скажем, во время чтения, то есть тогда, когда мозг явно занят другим.
Вот что рассказал, например, изобретатель бинокулярного микроскопа С. Венгам. Он тщетно пытался превратить обычный микроскоп в двойной. Искал форму призмы, которая бы делила пучок света в окуляре на два пучка. Однажды ему пришлось отложить работу и заняться в течение двух недель инженерными делами.
Как-то вечером, покончив с дневными трудами, он читал пустой детективный роман, совсем не думая о своем микроскопе. И вдруг ему совершенно отчетливо явилась форма призмы, отвечавшая задуманной цели.
Он достал чертежные инструменты, вынул диаграмму и внес требуемые расчеты. А на другой день была изготовлена призма, которая вполне удовлетворяла проекту.
По той же причине плодотворными для творчества оказываются состояния перехода от глубокого отдыха, каким является сон, к бодрствованию. По-видимому, расторможенные сном структуры мозга, не успев еще обрести привычные состояния и нормы «поведения», наиболее открыты для неожиданных посетителей. В такие мгновения скорее всего и происходят невероятные сцепления идей, могущие оказаться плодотворными.
Так, Р. Декарт писал, что «творческое настроение» посещает его, когда он бывает в расслабленном состоянии от сна. По собственному признанию К. Гаусса, перспективные догадки приходили ему в минуты пробуждения. Есть аналогичные свидетельства и многих других ученых.
В один из таких моментов явилась, например, А Эйнштейну решающая идея теории относительности.
Его сокурсник Я. Эрат передает рассказ самого ученого, будто однажды утром, хорошо выспавшись, А. Эйнштейн сел в постели и вдруг понял, что время зависит от состояния системы отсчета. Два события, которые для наблюдателя одной системы отсчета происходят одновременно, могут быть неодновременными для наблюдателя другой системы. Поясним это следующим примером. Положим, на Солнце и на Земле произошли, будем говорить, «одновременно» газовые вспышки. Однако мы можем утверждать одновременность событий лишь для наблюдателя, находящегося на одинаковом расстоянии от Солнца и от Земли Если же наблюдатель находится, к примеру, вблизи Земли, вспышку на ней он зафиксирует на 8 минут раньше, чем вспышку на Солнце, поскольку световому сигналу потребуется время (равное 8 минутам), чтобы пройти расстояние от Солнца до Земли.