Электрическая Вселенная. Невероятная, но подлинная история электричества
Электрическая Вселенная. Невероятная, но подлинная история электричества читать книгу онлайн
Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «Е=мс 2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.
David Bodanis ELECTRIC UNIVERSE How Electricity Switched on The Modern World © 2005 by David BodanisВнимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Последнее-то и составляло проблему. Будучи потомком человека столь прославленного, Уотсон Уатт вовсе не желал закончить свой век как служащий средних лет, обладающий средним доходом и не обладающий даже средненькой известностью, да еще и застрявший где-то на периферии государственного научного учреждения, во многих милях от Лондона.
И вот в январе 1935 года на него словно с неба, а точнее сказать, из министерства военно-воздушных сил — что даже лучше — свалился запрос. Работавший в министерстве знакомый интересовался, имеется ли хотя бы доля истины в слухах о том, что можно создать радиопередатчик, способный посылать на летящий самолет ужасные «лучи смерти». Ответить на сам вопрос труда не составляло — нет, не имеется, поскольку радиоволны слишком слабы, чтобы причинить какой-либо ущерб массивному самолету. Однако Уотсону Уатту вовсе не хотелось, чтобы таким ответом все и закончилось.
Он понимал, что, как только ответ будет послан, ненадолго открывшаяся перед ним дверь в лондонское министерство тут же закроется; он так и останется торчать в Слау и, может быть, завязнет здесь навсегда. Если же он попробует развить эту идею, вытянуть из нее что-нибудь получше, чем она сама, тогда — как знать? — его могут начать регулярно вызывать в Лондон. Он получит возможность ездить в столицу за счет правительства, скромным образом присутствовать на совещаниях, встречаться с высокопоставленными людьми, а там и продвинуться по службе.
То, что в итоге проистекло из реакции Уотсона Уатта на случайный, по сути дела, запрос — сверхсекретные миссии в Вашингтон, личные совещания с Черчиллем, пожалованное королевой рыцарское звание и выделенные победившей страной огромные средства, — лежало далеко за пределами его воображения. И все же в тот момент, в январе 1935-го, он действительно нашел нечто способное заинтересовать министерство военно-воздушных сил, однако и эта находка составляла своего рода проблему. Уотсон Уатт был человеком очень гордым, но в то же время и довольно честным с самим собой. Сознавая, что метеоролог он хороший, Уатт не без грусти оценивал себя как «второразрядного физика» и «шестиразрядного математика».
Впрочем, у него был друг и коллега Арнольд Уилкинс, который проработал в Слау еще не настолько долго, чтобы записать себя в люди второго разряда. Уилкинс с удовольствием провел расчеты, показывающие, что может случиться, если послать радиоволны в направлении приближающегося самолета. Невидимые волны, в которые верили Фарадей, Максвелл и Герц, — те подобные волшебному ковру вибрации силового поля — не несут, разумеется, энергию, достаточную для того, чтобы расплавить самолет или изувечить пилота. Но, может, они способны на что-то еще?
Обдумав этот вопрос, Уилкинс сообразил, что они позволят использовать вражеский самолет противнего же самого! Физик по образованию, Уилкинс знал нечто важное о металлах и в особенности о том, что происходит внутриметалла, из которого состоит корпус самолета. Уотсон Уатт тоже знал это, но он был не силен в расчетах, и потому их совместную работу возглавил Уилкинс.
Во времена Фарадея и Уильяма Томсона лишь немногим теоретикам приходило в голову, что невидимые волны способны воздействовать на обычные твердые субстанции и порождать в них некое движение. Да оно было и понятно, ибо в отсутствие отдельных заряженных частиц — когда все они собраны в сбалансированные группы и упрятаны внутрь атомов, как и обстоит дело в окружающих нас обычных предметах, — электрическим и магнитным силам просто не за что зацепиться. (Тяготение же, напротив, не имеет противоположности, способной нейтрализовать его, отчего и остается неизменно заметным.)
Однако ко времени, когда началась совместная работа Уилкинса и Уотсона Уатта, стало уже ясно, как могут возникать электрические эффекты. В 1930-х атом привычно рассматривался как миниатюрная Солнечная система, в центре которой находилось подобное нашему Солнцу большое тяжелое ядро. А вокруг него вращались по далеким орбитам подобные планетам отдельные электроны. Радиоволны же суть колебания протяженного электрического и магнитного полей, так что, когда такая волна пронизывает отдельный атом, она пытается оторвать от него эти электроны.
Достаточно часто ей это сделать не удается. Поскольку находящиеся в наших телах электроны довольно крепко связаны с ядрами атомов, они — наши тела — для большинства подобного рода полей остаются невидимками. Даже атомы, из которых состоят обычные камни и кирпичи, устроены так, что радиоволны просто пролетают сквозь них, отчего мы и имеем возможность пользоваться сотовыми телефонами внутри домов.
Другое дело металлы. Атомы железа или алюминия построены иначе. Хотя большая часть электронов остается в этих атомах на своих орбитах, самые удаленные от ядер получают свободу Обычная полоска алюминиевой фольги содержит несколько миллиардов атомов, ее можно рассматривать как галактику из нескольких миллиардов звезд, у каждой из которых некоторые планеты движутся по близким орбитам, однако имеются и такие, что оторвались и ушли в открытый космос. Все это выглядит так, как если бы бесчисленные электрически заряженные нептуны и плутоны свободно летали среди звезд галактики, вместе с подобными им беглецами из других солнечных систем.
Вот так и выглядит металл, из которого состоит крыло самолета. Когда радиоволны врываются в одну из этих металлических галактик, самые близкие к ядрам каждой из миниатюрных солнечных систем электроны, быть может, и получают удары, но сорвать их с орбит не удается. А вот электроны далекие — блуждающие, одинокие, осиротевшие, — электроны, которые свободно движутся в миниатюрной галактике, — это уже совсем другое дело. Пролетающие через металл радиоволны «захватывают» их, и энергии этих волн хватает на то, чтобы увлекать такие электроны за собой.
Когда это происходит внутри крошечного металлического приемника, подобного тому, что встроен в сотовый телефон, электроны-одиночки начинают подрагивать, подрагивания эти усиливаются, и происходит передача наиважнейшей для нас информации — скажем, фразы «Эй, я в машине!». Уилкинс же сообразил, что когда радиоволна ударяет в гораздо больший по размерам кусок металла, то и результат получается куда более драматичный.
Вражеский самолет состоит из метров и метров такого уязвимого, ожидающего прихода волны металла. Любая посланная в его направлении радиоволна будет ускорять свободные, подвижные электроны этого металла. А между тем каждый электрон всегда окружен своим собственным силовым полем. Если электрон неподвижен, это силовое поле остается относительно спокойным и никаких сигналов от крыла самолета не исходит. Но если электрон начинает болтаться из стороны в сторону, взбалтывается и его силовое поле. (Именно это и поняли Максвелл и Герц.)
Нацелив радиопередатчик на самолет, вы заставите триллионы и триллионы электронов колебаться в унисон, образуя тем самым самостоятельные крошечные радиопередатчики. Иными словами, посылая невидимые радиоволны, Уилкинс мог обратить вражеский самолет в летающую передающую станцию! Весь самолет стал бы антенной, отключить которую невозможно.
Самый большой вопрос состоял, однако же, в том, будет ли эта передача настолько мощной, чтобы ее обнаружить. Ведь небо велико, а радиоволны малы. Большая часть посылаемых радиоволн будет рассеиваться и пролетать мимо самолета, или же к моменту встречи с ним они могут оказаться уже очень слабыми. Уилкинс провел расчеты. И выяснил: даже если рассеяние испускаемой волны будет настолько широким, что на долю электронов, которые присутствуют в металле самолета, отделенного от излучателя четырьмя милями, придется лишь тысячная ее часть, этого будет довольно. Тут снова начинает играть роль сама крошечность электронов. Уилкинс показал, что даже такая рассеянная волна заставит каждую секунду колебаться 60 квадрильонов (60 000 000 000 000 000) электронов, находящихся в крыле самолета. Невидимые радиоволны, генерируемые таким «электронным ветром», будут достаточно мощными, чтобы их можно было принять на земле. (Изобретенный десятилетия спустя самолет «стелс» остается невидимым для радаров отчасти потому, что используемая для него краска не пропускает в его металлический корпус значительную долю посылаемой радаром энергии, а отчасти по причине расположения его поверхностей под такими углами, что все, отражаемое ими, уходит в сторону от изначального излучателя.)