-->

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

На нашем литературном портале можно бесплатно читать книгу Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы, Вайнберг Стивен-- . Жанр: Прочая научная литература / Физика / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Название: Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Дата добавления: 15 январь 2020
Количество просмотров: 356
Читать онлайн

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы читать книгу онлайн

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - читать бесплатно онлайн , автор Вайнберг Стивен

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.

Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?

Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.

Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 18 19 20 21 22 23 24 25 26 ... 82 ВПЕРЕД
Перейти на страницу:

Несколько лет тому назад я сам попытался построить такую теорию. У меня не было серьезных намерений предложить альтернативу квантовой механике. Я всего лишь хотел построить хоть какую-нибудь теорию, предсказания которой были бы близки, но не совпадали с предсказаниями квантовой механики и которую можно было бы экспериментально проверить. Для этой цели я попытался предложить физикам-экспериментаторам идею такого эксперимента, который мог бы служить интересным количественным тестом справедливости квантовой механики. Когда речь идет о проверке само́й квантовой механики, а не какой-то конкретной квантовомеханической теории вроде стандартной модели, то для того, чтобы экспериментально различить квантовую механику и альтернативную теорию, следует проверить выполнение какого-то весьма общего свойства любой конкретной квантовомеханической теории. В поисках альтернативы квантовой механике я вцепился в одно общее свойство этой теории, всегда казавшееся несколько более произвольным, чем другие, а именно в свойство линейности.

Нужно сказать несколько слов о смысле линейности. Вспомним, что значения волновой функции любой системы меняются со скоростями, зависящими от этих значений, а также от природы системы и окружающей среды. Например, скорость изменения значения здесь волновой функции нашей мифической частицы равна некоторой константе, умноженной на значение здесь, плюс другая константа, умноженная на значение там. Динамический закон такого конкретного вида называется линейным, так как если начать менять одно значение волновой функции в произвольный момент времени и построить график любого значения волновой функции в любой последующий момент в зависимости от меняющегося значения, то при прочих равных условиях этот график будет прямой линией. Грубо говоря, отклик системы на любое изменение ее состояния пропорционален этому изменению. Одним из очень важных следствий такой линейности, как отмечал Скрудж, является то, что в квантовой механике не возникает хаотического поведения; малое изменение начальных условий приводит только к малым изменениям значений волновой функции в любой последующий момент времени.

Существует множество классических систем, линейных в указанном смысле, но линейность в классической физике никогда не бывает точной. Наоборот, в квантовой механике предполагается, что она линейна при любых обстоятельствах. Если кто-то собирается поискать способы изменения квантовой механики, то естественнее всего попробовать исследовать возможность, что эволюция волновой функции не точно линейна.

После некоторых усилий я построил слегка нелинейную альтернативу квантовой механике, казавшуюся физически осмысленной и легко проверяемой с очень высокой точностью. Тестом служило общее следствие линейности, заключающееся в том, что частоты колебаний любой линейной системы не зависят от способа возбуждения этих колебаний.

Например, Галилей заметил, что частота колебаний маятника не зависит от того, насколько велик размах колебаний. Это верно потому что пока амплитуда колебаний достаточно мала, маятник является линейной системой; скорости изменения его отклонения и его импульса пропорциональны, соответственно, импульсу и отклонению. Все часы используют это свойство колебаний линейных систем, идет ли речь о маятниковых, пружинных или кварцевых часах. Несколько лет назад, после разговора с Дэвидом Уайнлендом из Национального бюро стандартов, я понял, что вращающиеся вокруг своей оси ядра, используемые в Бюро для создания эталонов времени, позволяют осуществить превосходный тест линейности квантовой механики; в моей слегка нелинейной альтернативной теории частота, с которой направление спина ядра прецессирует вокруг направления магнитного поля, должна очень слабо зависеть от угла между спином и магнитным полем. Из того факта, что в Бюро стандартов никогда не наблюдали подобного эффекта, я сделал вывод, что любые нелинейные эффекты в изучавшемся ядре (изотопе бериллия) не могут привести к изменению энергии ядра на величину, большую, чем 10−18(в относительных единицах). После этой моей работы Уайнленд и другие экспериментаторы из Гарварда, Принстона и других лабораторий улучшили точность измерений, так что сейчас мы знаем, что нелинейные эффекты давали бы еще меньший вклад. Таким образом, даже если линейность квантовой механики приближенна, это приближение очень хорошее.

Все это не вызывает особого удивления. Даже если существуют малые нелинейные поправки к законам квантовой механики, нет никаких оснований полагать, что эти поправки окажутся достаточно заметными, чтобы быть обнаруженными в первой же серии нацеленных на это экспериментов. Что меня действительно разочаровало, так это то, что нелинейная альтернатива квантовой механике, как оказалось, содержит внутренние теоретические трудности. Сначала я не сумел найти способ распространить нелинейную версию квантовой механики на теории, основанные на специальной теории относительности Эйнштейна. Затем, уже после того, как была опубликована моя работа, Н. Гизин из Женевы и мой коллега Джозеф Польчински из Техасского университета независимо показали, что в мысленном эксперименте Эйнштейна–Подольского–Розена, упоминавшемся Крошкой Тимом, нелинейные свойства альтернативной теории могут быть использованы для мгновенной посылки сигналов на большие расстояния, что безусловно запрещено специальной теорией относительности [70]. В конце концов к настоящему времени я прекратил всякую работу над этой проблемой; я просто не знаю, как можно немного изменить квантовую механику, не разрушив ее в результате до основания.

Этот крах теоретической попытки найти приемлемую альтернативу квантовой механике в еще большей степени, чем точные эксперименты по проверке линейности, убеждает меня, что квантовая механика такова, какова она есть, потому что любое ее малое изменение обязательно приведет к логическим противоречиям. Если это так, то квантовая механика должна быть постоянной частью физики. Иными словами, квантовая механика должна выжить не как приближение к более глубокой истине, подобно тому, как ньютоновская теория тяготения сохранилась как приближение к эйнштейновской общей теории относительности, а как точно выполняющееся свойство окончательной теории.

Глава V. Рассказы о теории и эксперименте

Когда мы стареем,
Мир нам кажется странным. Все сложнее
Понять смерть и жизнь. Ведь жизнь
Не вспышка без до и после,
А пожар без конца и начала.
Т. Элиот. Ист Кокер

Я хочу теперь рассказать три истории об успехах физики ХХ в. Из всех этих историй можно извлечь поучительный вывод: физики очень часто руководствуются чувством прекрасного, причем это проявляется не только при создании новых теорий, но даже тогда, когда они судят о применимости уже созданных. Похоже, что мы постоянно учимся тому, как предугадывать красоту природы на самом глубоком уровне. Нет ничего прекраснее сознания, что мы действительно продвигаемся вперед к раскрытию окончательных законов природы.

* * *

Мой первый рассказ – об общей теории относительности (ОТО), иначе говоря эйнштейновской теории тяготения. Эйнштейн создал свою теорию в 1907–1915 гг. и представил ее миру в серии статей 1915–1916 гг. Если говорить очень коротко, то вместо ньютоновской картины тяготения как притяжения между всеми массивными телами общая теория относительности описывает тяготение как эффект, обусловленный кривизной пространства-времени, которую создают и вещество, и энергия. К середине 1920-х гг. эта революционная теория стала общепринятой как правильная теория тяготения, и с тех пор такая точка зрения не изменилась. Как это случилось?

1 ... 18 19 20 21 22 23 24 25 26 ... 82 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название