-->

Творчество как точная наука. Теория решения изобретательских задач

На нашем литературном портале можно бесплатно читать книгу Творчество как точная наука. Теория решения изобретательских задач, Альтов Генрих Саулович-- . Жанр: Прочая научная литература / Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Творчество как точная наука. Теория решения изобретательских задач
Название: Творчество как точная наука. Теория решения изобретательских задач
Дата добавления: 15 январь 2020
Количество просмотров: 264
Читать онлайн

Творчество как точная наука. Теория решения изобретательских задач читать книгу онлайн

Творчество как точная наука. Теория решения изобретательских задач - читать бесплатно онлайн , автор Альтов Генрих Саулович

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга.

Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы.

Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 17 18 19 20 21 22 23 24 25 ... 52 ВПЕРЕД
Перейти на страницу:
Творчество как точная наука. Теория решения изобретательских задач - i_016.png
Рис. 8

Антикорабль не обязан держаться на воде. Следовательно, его можно до отказа заполнить «железом» — двигателями. Чем больше мощность двигателей, тем выше скорость. Но антикорабль с его прекрасными сверхмощными двигателями камнем пойдет на дно… Впрочем, при движении он будет держаться за счет подъемной силы, создаваемой подводными крыльями. А на стоянке можно использовать «поплавки» — дополнительные надувные емкости. На стоянке наш антикорабль подобно обычному кораблю (и дирижаблю) будет держаться на плаву по закону Архимеда. А разогнавшись и подняв корпус над водой, антикорабль «сожмется» — уберет ненужные теперь дополнительные емкости (дирижабль станет самолетом).

Идея антикорабля уже не кажется такой дикой. Наоборот, странной представляется обычная конструкция, у которой поднятый над водой корпус сохраняет большой объем, нужный лишь в воде…

В 1911 г. была создана камера Вильсона — один из основных инструментов ядерной физики. Заряженные частицы, двигаясь в пересыщенном водяном паре, заполняющем камеру, становились видимыми, образовывали след из капелек жидкости. Были предложены тысячи усовершенствований камеры Вильсона. Но почти полвека никому не приходила в голову идея «антикамеры», в которой след образовывался бы пузырьками газа в жидкой среде. В 1960 г. Д. Глезер получил Нобелевскую премию за создание пузырьковой камеры…

Вернемся к экранам талантливого мышления. Три этажа, девять экранов, изображения и антиизображения — это все-таки предельно упрощенная схема. Настоящее талантливое мышление имеет много этажей вверх от системы (надсистема — наднадсистема — …) и много этажей вниз от системы (подсистема — подподсистема-…). За деревом надо видеть не только лес, но и биосферу вообще, и не только лист, но и клетку листа. Много экранов должно быть влево от системы (недавнее прошлое, далекое прошлое…) и вправо от нее (близкое будущее, далекое будущее…). Изображение на экранах становится то большим, то маленьким, действие то замедляется, то ускоряется…

Сложно? Да. сложно. Мир, в котором мы живем, устроен сложно. И если мы хотим его познавать и преобразовывать, наше мышление должно правильно отражать этот мир. Сложному, динамичному, диалектически развивающемуся миру должна соответствовать в нашем сознании его полная модель — сложная, динамичная, диалектически развивающаяся.

Зеркало, отражающее образ мира, должно быть большим и многогранным. Как на картинах Чюрлениса.

Пожалуй, ни у какого другого художника нет столь сильного «системного видения» мира. Во многих картинах Чюрлениса на одном полотне даны не только «изображаемая система», но и ее «подсистемы» и «надсистема», в которую входит «система». В «Сонате моря» (аллегро) одновременно три разных масштаба. С высоты птичьего полета изображены прибрежные холмы. Но волны нарисованы в ином масштабе; они показаны глазами человека. стоящего на мелководье: сквозь воду видна игра света и теней на песчаном дне, видны силуэты рыб. И тут же еще один масштаб, совсем крупный — для «подсистем»: капли и пузырьки воздуха увидены почти вплотную…

Читатель вправе спросить: речь, (следовательно, идет уже не о талантливом, а о гениальном мышлении? Да, это так. Более того, даже у гениев такое мышление бывает далеко не каждый день. В сущности, «полная экранная схема» показывает мышление гения в его звездные часы, весьма нечастые и в жизни великих мыслителей и художников. «Полная схема»-это ИКР, а приближение к этому идеалу — АРИЗ. Нетрудно заметить, что АРИЗ представляет собой линейную развертку «полной схемы» плюс информационное обеспечение, позволяющее «рисовать» требуемые схемой «изображения».

ДИАЛЕКТИКА АНАЛИЗА

При изучении ТРИЗ сначала осваивают отдельные операции, составляющие «полную схему», а затем начинается самое трудное — объединение отдельных операций в систему мышления. На этом этапе наряду с решением обычных изобретательских задач нужны тренировки на сложных проблемах. В частности, в экспериментах использовался вопрос: «В чем смысл жизни?»)

Если группа только приступила к занятиям, идет обычный перебор вариантов: все варианты на уровне исходной системы («смысл жизни человека») и только в настоящем времени.

Творчество как точная наука. Теория решения изобретательских задач - i_017.png
Рис. 9.

Иначе проходит занятие в обученной групп. Сразу вносятся коррективы в саму постановку вопроса: жизнь надо рассматривать как минимум на трех уровнях (клетка, организм, общество), причем на каждом уровне должно быть три этапа (прошлое, настоящее, будущее). Возникает схема наподобие той, что приведена на рис. 8. Но клетки древнее организмов, а организмы древнее общества. схему надо изменить, это очевидно (рис. 9).

Творчество как точная наука. Теория решения изобретательских задач - i_018.png
Рис. 10.

Развитие одноклеточных замедлилось с тех пор, как природа «изобрела» организм (этаж Б). Поправка вторая: развитие организмов (биологическое) замедлилось с тех пор, как было «изобретено» общество (этаж В). Главная линия развития идет ступенчато, переходя с этажа на этаж (рис. 10).

Схему можно дополнить снизу еще более длинными этажами: «жизнями» молекул, атомов, элементарных частиц… Слишком тяжелые атомы неустойчивы: «этаж» атомов обрывается где-то около сотого «образца», дальнейшее развитие идет за счет объединения атомов в молекулы. «Этаж» молекул перехватывает эстафету развития: образуются все более сложные молекулы, вплоть до полимеров и белков. Однако с появлением белков развитие молекул останавливается: эстафета перехватываемся клетками, которые тоже образуют «этаж» последовательно развивающихся «образцов», и, хотя известны очень крупные клетки (у водорослей), развитие опять-таки перехватывает надсистема — организм. Сначала происходит простое объединение клеток, но постепенно возникают все более сложные организмы — вплоть до человека. Впрочем, еще задолго до появления человека природа начала «экспериментировать», пробуя создавать из организмов (муравьи, пчелы) надсистемы. По-видимому, эти экспериментальные надсистемы оказались плохими по одному, но решающему критерию: они не обеспечивали ускорения темпов развития, наоборот, темпы развития этих надсистем оказались близкими к нулю. Природа вынуждена была «изобрести» человека, и только тогда развитие перешло на следующий «этаж».

Возникает вопрос о причинах «лестничной» эстафеты. Ответ почти очевиден: чем выше этаж, тем больше он независим от внешних условий. Элементарные частицы (если они взаимодействуют с внешней средой) живут ничтожно мало. Неорганические (и простые органические) соединения более «живучи», но и они почти беззащитны против внешнего воздействия — нагрева, охлаждения, химических реакций. Белок и клетка — более высокие ступени организации материи в ее борьбе за независимость от внешних условий. Еще более высокая ступень — организм. Клетки нашего тела обновляются в среднем через семь лет; организм в целом живет на порядок больше. Он выстаивает и в тех случаях, когда внешнее воздействие уничтожает часть клеток. Общество еще устойчивее по отношению к внешним воздействиям и намного защищеннее отдельного организма.

Любопытно применить построенную схему к анализу «Соляриса» Лема или «Черного Облака» Хойла. В обоих случаях — явное нарушение «лестничной» эстафеты: организм должен был перейти на уровень общества, а он продолжал увеличиваться, оставаясь одним организмом, и дорос до размеров целой планеты…

Схему можно дополнить и сверху. Развитие общества будет идти до определенного времени, а затем произойдет переход на следующий «этаж», на котором общество будет играть такую же роль, какую клетка играет в организме…

1 ... 17 18 19 20 21 22 23 24 25 ... 52 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название