Загадки простой воды
Загадки простой воды читать книгу онлайн
Вода играет большую роль в нашей жизни. Что бы делало человечество без воды, даже трудно представить. По-видимому, оно просто бы не существовало.
С водой на нашей планете связаны не только жизнь и климат, но и работа большинства отраслей народного хозяйства, особенно водного транспорта. Вода является богатейшим источником энергии – это гидроэнергия рек, энергия приливов, геотермальная и термоядерная энергия.
Именно благодаря воде в природе возникают интереснейшие и самые разнообразные явления, такие, как радуга, гало, сулой, венцы, «шепот звезд» и другие.
Некоторые люди связывают с ними различные суеверия и приметы. Но ученые разгадали и нашли объяснение этим загадочным явлениям природы. Причиной некоторых из них является вода, ее пары и лед.
Настоящая книга представляет собой серию очерков о физических свойствах воды и льда, а также о явлениях природы, которые с ними связаны.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
* Дипольными называются жидкости, у которых центры положительного и отрицательного зарядов в молекулах не совпадают между собой. Подавляющее число жидкостей в природе является дипольными. Вообще же электрический диполь представляет собой совокупность двух равных по величине и противоположных по знаку электрических зарядов (или центров концентрации объемного заряда), находящихся на некотором расстоянии друг от друга и связанных между собой силами притяжения.
Так как при разбрызгивании жидкостей образуются пузыри, в тонкой пленке которых заряд поверхности жидкости уже не будет скомпенсирован зарядом внутренних слоев, в воздух вместе с мельчайшими частицами жидкости уходит и избыточный заряд тонкой пленки пузырей. При адсорбции* поверхностью жидкости свободных зарядов из ее внутренних слоев происходит уменьшение эффективной величины электрического поля внутреннего двойного электрического слоя и затем изменение его знака. Этим объясняется изменение знака электризации при дроблении дипольных жидкостей с добавлением к ним примесей.
* Адсорбция – осаждение веществ из газа или раствора на поверхности твердого тела или жидкости.
Электричество в организме растений
Жизнь растений связана с влагой. Поэтому электрические процессы в них наиболее полно проявляются при нормальном режиме увлажнения и затухают при увядании. Это связано с обменом зарядами между жидкостью и стенками капиллярных сосудов при протекании питательных растворов по капиллярам растений, а также с процессами обмена ионами между клетками и окружающей средой. Важнейшие для жизнедеятельности электрические поля возбуждаются в клетках. В состоянии равновесия мембраны растительных клеток непроницаемы для ионов кальция и проницаемы для ионов калия.
Выход ионов через клеточную мембрану сообщает клетке отрицательный заряд; По достижении равновесия в распределении ионов калия мембранный потенциал приобретает предельное значение потенциала покоя. При раздражении растения изменяется проницаемость клеточных мембран для ионов кальция. Ионы кальция поступают в клетку и уменьшают ее отрицательный заряд. За счет нарушения равновесия в распределении зарядов возникает пик мембранного потенциала, который в виде электрического импульса распространяется вдоль поверхности клеток. Последующий выход из клеток ионов калия возвращает мембранный потенциал к равновесию. Скорость распространения импульсов раздражения по клеткам растений составляет несколько сантиметров в секунду (по нервам животных раздражение распространяется в сотни раз быстрее). Малая скорость распространения раздражений по организму растений связана с их общей неподвижностью.
Особенно активно электрические процессы протекают в клетках корней, поскольку именно через эти клетки поступают питательные соки к растущим побегам. Конечные разветвления корней и верхушек побегов растений всегда заряжены отрицательно относительно стебля. У некоторых растений вблизи корчей в течение нескольких часов происходят колебания электрического потенциала с периодом около 5 минут и амплитудой в несколько милливольт. Наиболее значительные колебания отмечаются у самого кончика корня. Об интенсивности электрических процессов в корневых клетках можно судить по величине протекающего через них тока. Исследованиями установлено, что через каждый 1мм2 поверхности корня протекает ток около 0,01 микроампера.
Поврежденное место в тканях растений всегда заряжается отрицательно относительно неповрежденных участков, а отмирающие участки растений приобретают отрицательный заряд по отношению к участкам, растущим в нормальных условиях.
Одностороннее освещение листа возбуждает электрическую разность потенциалов между освещенными и неосвещенными его участками и черешком, стеблем или корнем. Эта разность потенциалов выражает реакцию растения на изменения в его организме, связанные с началом или прекращением процесса фотосинтеза.
В практике распыления ядохимикатов в сельском хозяйстве выяснено, что на свеклу и яблоню в большей мере осаждаются химикаты с положительным зарядом, на сирень – с отрицательным. Несомая ветром цветочная пыльца имеет отрицательный заряд, приближающийся по величине к заряду пылинок при пылевых бурях, Вблизи теряющих пыльцу растений резко изменяется соотношение между положительными и отрицательными легкими ионами, что благоприятно сказывается на дальнейшем развитии растений.
Заряженные семена культурных растений имеют сравнительно высокую электропроводность и поэтому быстро теряют заряд. Семена сорняков ближе по своим свойствам к диэлектрикам и могут сохранять заряд более длительное время. Это используется для отделения на конвейере семян культурных растений от сорняков.
Прорастание семян в сильном электрическом поле (например, вблизи коронирующего электрода) приводит к изменениям высоты и толщины стебля и густоты кроны развивающихся растений. Происходит это в основном благодаря перераспределению в организме растения под влиянием внешнего электрического поля объемного заряда. Если в результате исследований удастся найти сумму наиболее благоприятных для развития растений характеристик действующего извне электрического поля, выращивание растений в парниках в еще большей мере будет подчинено воле человека.
Значительные разности потенциалов в организме растений возбуждаться не могут, поскольку растения не имеют специализированного электрического органа. Поэтому среди растений не существует «древа смерти», которое могло бы убивать живые существа своей электрической мощностью.
Электризация снега в метелях
Великий русский ученый М.В. Ломоносов первым оценил особые электрические свойства льда. В результате опытов по электризации льда он установил, что из него «выскакивает огонь с треском, буде он (лед) не имеет в себе воздушных пузырьков и по бокам не мокр. Им можно зажечь нефть». Способность льда при натирании наэлектризовываться некоторые ученые XVIII века пытались использовать (не совсем удачно) для изготовления электростатических машин трения. Известный русский физик В.В. Петров первый ставил опыты по изучению электропроводности льда.
При продувании надо льдом воздуха, очищенного от пыли и других взвешенных примесей, лед не электризуется. Если же направить на плоскую поверхность льда капельно-паровой поток, то в результате столкновения капелек воды со льдом происходит обмен зарядом и возникает положительная электризация льда и отрицательная воды. Однако, если лед покрывается пленкой воды, электризация прекращается.
При продувании надо льдом воздуха, содержащего капельки тумана нашатырного спирта, каждый литр воздуха приобретает заряд около 2·10–11 кулона. В особо плотных аммиачных туманах этот заряд может увеличиться вдвое. Лед в этих условиях получает такой же по величине заряд, но противоположный по знаку. Положительная электризация льда наблюдается и при продувании надо льдом печной сажи.
Продавливание воды через специально устроенные в образцах льда капилляры приводит к положительной электризации у льда и отрицательной у воды. Как правило, при трении о другие тела (стекло, сталь, медь) лед приобретает положительный заряд, а эти тела – отрицательный. Но бывают и исключения. Так, при продувании сухого снега через сильно оксидированную железную решетку, у которой выход электронов за ее пределы, благодаря оксидированию поверхности облегчен, снег заряжается отрицательно.