-->

Краткий курс логики: Искусство правильного мышления

На нашем литературном портале можно бесплатно читать книгу Краткий курс логики: Искусство правильного мышления, Гусев Дмитрий Алексеевич-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Краткий курс логики: Искусство правильного мышления
Название: Краткий курс логики: Искусство правильного мышления
Дата добавления: 15 январь 2020
Количество просмотров: 260
Читать онлайн

Краткий курс логики: Искусство правильного мышления читать книгу онлайн

Краткий курс логики: Искусство правильного мышления - читать бесплатно онлайн , автор Гусев Дмитрий Алексеевич

Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.

Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 49 ВПЕРЕД
Перейти на страницу:

5. Отрицательное суждение (отрицание) – это сложное суждение с союзом «неверно, что…», который обозначается условным знаком «¬». С помощью этого знака отрицательное суждение можно представить в виде формулы: ¬a (читается «неверно, что a»), где a – это простое суждение. Здесь может возникнуть вопрос – где же вторая часть сложного суждения, которую мы обычно обозначали символом b? В записи: ¬a, уже присутствуют два простых суждения: a – это какое-то утверждение, а знак «¬» – его отрицание. Перед нами как бы два простых суждения – одно утвердительное, другое – отрицательное. Пример отрицательного суждения: «Неверно, что все мухи являются птицами».

Итак, мы рассмотрели пять видов сложных суждений: конъюнкцию, дизъюнкцию (нестрогую и строгую), импликацию, эквиваленцию и отрицание.

Союзов в естественном языке много, но все они по смыслу сводятся к рассмотренным пяти видам, и любое сложное суждение относится к одному из них. Например, сложное суждение: «Уж полночь близится, а Германа всё нет», – является конъюнкцией, потому что в нём союз «а» употребляется в роли соединительного союза «и». Сложное суждение, в котором вообще нет союза: «Посеешь ветер, пожнёшь бурю», – является импликацией, т. к. два простых суждения в нём связаны по смыслу условным союзом «если…то».

Любое сложное суждение является истинным или ложным в зависимости от истинности или ложности входящих в него простых суждений. Приведена табл. 6 истинности всех видов сложных суждений в зависимости от всех возможных наборов истинностных значений двух входящих в них простых суждений (таких наборов всего четыре): оба простых суждения истинные; первое суждение истинное, а второе ложное; первое суждение ложное, а второе истинное; оба суждения ложные).

Краткий курс логики: Искусство правильного мышления - table_06.png

Как видим, конъюнкция истинна только тогда, когда истинны оба входящих в неё простых суждения. Надо отметить, что конъюнкция, состоящая не из двух, а из большего числа простых суждений, также истинна только в том случае, когда истинны все входящие в неё суждения. Во всех остальных случаях она является ложной. Нестрогая дизъюнкция, наоборот, истинна во всех случаях за исключением того, когда оба входящих в неё простых суждения ложны. Нестрогая дизъюнкция, состоящая не из двух, а из большего числа простых суждений, также ложна только тогда, когда ложны все входящие в неё простые суждения. Строгая дизъюнкция истинна только тогда, когда одно входящее в неё простое суждение истинно, а другое ложно. Строгая дизъюнкция, состоящая не из двух, а из большего числа простых суждений, истинна только в том случае, если истинно только одно из входящих в неё простых суждений, а все остальные ложны. Импликация ложна только в одном случае – когда её основание является истинным, а следствие ложным. Во всех остальных случаях она истинна. Эквиваленция истинна тогда, когда два составляющих её простых суждения истинны или когда оба являются ложными. Если одна часть эквиваленции истинна, а другая ложна, то эквиваленция ложна. Проще всего определяется истинность отрицания: когда утверждение истинно, его отрицание ложно; когда утверждение ложно, его отрицание истинно.

Проверьте себя:

1. На каком основании выделяются виды сложных суждений?

2. Охарактеризуйте все виды сложных суждений: название, союз, условное обозначение, формула, пример. Чем отличается нестрогая дизъюнкция от строгой? Как отличить импликацию от эквиваленции?

3. Каким образом можно определить вид сложного суждения, если в нём вместо союзов «и», «или», «если… то» употребляются какие-либо другие союзы?

4. Приведите по три примера для каждого вида сложных суждений, не используя при этом союзов «и», «или», «если…то».

5. Определите, к какому виду относятся следующие сложные суждения:

1. Живое существо является человеком только тогда, когда оно обладает мышлением.

2. Человечество может погибнуть то ли от истощения земных ресурсов, то ли от экологической катастрофы, то ли в результате третьей мировой войны.

3. Вчера он получил двойку не только по математике, но ещё и по русскому.

4. Проводник нагревается, когда через него проходит электрический ток.

5. Окружающий нас мир либо познаваем, либо нет.

6. Или же он совершенно бездарен, или же полный лентяй.

7. Когда человек льстит, он лжёт.

8. Вода превращается в лёд лишь при температуре от 0 °C и ниже.

6. От чего зависит истинность сложных суждений? Какие значения истинности принимают конъюнкция, нестрогая и строгая дизъюнкция, импликация, эквиваленция и отрицание в зависимости от всех наборов истинностных значений входящих в них простых суждений?

2.7. Логические формулы

Любое высказывание или целое рассуждение можно подвергнуть формализации. Это значит отбросить его содержание и оставить только его логическую форму, выразив её с помощью уже известных нам условных обозначений конъюнкции, нестрогой и строгой дизъюнкции, импликации, эквиваленции и отрицания.

Например, чтобы формализовать следующее высказывание: «Он занимается живописью, или музыкой, или литературой», – надо сначала выделить входящие в него простые суждения и установить вид логической связи между ними. В приведённое высказывание входят три простых суждения: «Он занимается живописью», «Он занимается музыкой», «Он занимается литературой».

Эти суждения объединены разделительной связью, однако они друг друга не исключают (можно заниматься и живописью, и музыкой, и литературой), следовательно, перед нами – нестрогая дизъюнкция, форму которой можно представить следующей условной записью: abc, где a, b, c – указанные выше простые суждения. Форму: abc, можно наполнить каким угодно содержанием, например: «Цицерон был политиком, или оратором, или писателем», «Он изучает английский, или немецкий, или французский», «Люди передвигаются наземным, или воздушным, или водным транспортом».

Формализуем рассуждение: «Он учится в 9 классе, или в 10 классе, или в 11 классе. Однако, известно, что он не учится ни в 10, ни в 11 классе. Следовательно, он учится в 9 классе». Выделим простые высказывания, входящие в это рассуждение и обозначим их маленькими буквами латинского алфавита: «Он учится в 9 классе (a)», «Он учится в 10 классе (b)», «Он учится в 11 классе (c)». Первая часть рассуждения представляет собой строгую дизъюнкцию этих трёх высказываний: abc. Вторая часть рассуждения является отрицанием второго: ¬b, и третьего: ¬c, высказываний, причём эти два отрицания соединяются, т. е. связаны конъюнктивно: ¬ b ∧ ¬ c. Конъюнкция отрицаний присоединяется к упомянутой выше строгой дизъюнкции трёх простых суждений: (abc) ∧ (¬ b ∧ ¬ c), и уже из этой новой конъюнкции как следствие вытекает утверждение первого простого суждения: «Он учится в 9 классе». Логическое следование, как мы уже знаем, представляет собой импликацию. Таким образом, результат формализации нашего рассуждения выражается формулой: ((abc) ∧ (¬ b ∧¬ c)) → a. Эту логическую форму можно наполнить любым содержанием. Например: «Впервые человек полетел в космос в 1957 г., или в 1959 г., или в 1961 г. Однако, известно, что впервые человек полетел в космос не в 1957 г. и не в 1959 г.. Следовательно, впервые человек полетел в космос в 1961 г.» Ещё один вариант: «Философский трактат «Критика чистого разума» написал то ли Иммануил Кант, то ли Георг Гегель, то ли Карл Маркс. Однако, ни Гегель, ни Маркс не являются авторами этого трактата. Следовательно, его написал Кант».

1 ... 12 13 14 15 16 17 18 19 20 ... 49 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название