-->

Эврика! Радость открытия. Архимед

На нашем литературном портале можно бесплатно читать книгу Эврика! Радость открытия. Архимед, Агиляр Эугенио Мануэль Фернандес-- . Жанр: Прочая научная литература / История / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Эврика! Радость открытия. Архимед
Название: Эврика! Радость открытия. Архимед
Дата добавления: 16 январь 2020
Количество просмотров: 290
Читать онлайн

Эврика! Радость открытия. Архимед читать книгу онлайн

Эврика! Радость открытия. Архимед - читать бесплатно онлайн , автор Агиляр Эугенио Мануэль Фернандес
Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя. Данный закон, без сомнения, является одним из самых важных в истории, и он по праву удостоился того радостного возгласа, который с тех пор стал символом научного открытия: «Эврика!» Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 27 ВПЕРЕД
Перейти на страницу:
Эврика! Радость открытия. Архимед - img_39.jpg

РИС. 1

Эврика! Радость открытия. Архимед - img_40.jpg

РИС. 2

Архимед продолжил удваивать число углов дальше и в конце концов дошел до многоугольника с 96 сторонами! Это позволило ему доказать, что значение площади круга лежит между 3+10/71 и 3+1/7:

«Окружность любого круга составляет три его диаметра и еще менее 1/7 и более 10/71 его части» («Об измерении круга», утверждение 3):

3 + 10/71 < Sc <3 + 1/7, то есть, 3,1408 < Sc < 3,14029.

Таким образом, площадь круга с радиусом 1 составит 3,14, с точностью до двух знаков после запятой. Тут важно отметить: Архимед знал, что он вывел неточное значение. Ведь помещая площадь между двумя разными значениями, ученый прекрасно понимал, что выполняет только приближение.

Эврика! Радость открытия. Архимед - img_41.jpg
Окружность в квадрате

Согласно еще одному интересному рассуждению, которое можно найти в трактате «Об измерении круга», площадь вписанного в квадрат круга относится к площади этого квадрата как 11/14. И в данном контексте мы тоже приходим к тому же значению π — приблизительно 3,14. Рассмотрим следствие из этого положения. Во- первых, давайте внимательнее посмотрим на чертеж справа.

Площадь круга: Sкруга = πr².

Площадь квадрата: Sквадрата = (2r)²=4r².

Соотношения, которые их связывают:

площадь круга/площадь квадрата = πr²/4r² = π/4

То, что выяснил Архимед:

площадь круга/площадь квадрата = 11/14

Очевидно, что это одна и та же величина, и мы помним, что все выкладки Архимеда приблизительны:

π/4 ~ 11/14 ~ 3.14

Доказательство от противного

В трактате «Об измерении круга» утверждается:

Каждый круг равен прямоугольному треугольнику, один из катетов которого равен радиусу круга, а другой — длине окружности.

Имеется в виду равенство их площадей. Для доказательства (см. рисунок) ученый приводит следующие соображения.

— «Предположим, что площадь круга больше площади треугольника: Sкруга > Sтреугольника». Архимед показывает, что такое неравенство невозможно.

— «Предположим, что площадь круга меньше площади треугольника: Sкруга < Sтреугольника». Архимед доказывает, что невозможно и это.

— Учитывая, что площадь круга не может быть ни меньше, ни больше площади треугольника, они должны быть равны: Sкруга = Sтреугольника.

Эврика! Радость открытия. Архимед - img_42.jpg

Пользуясь нынешним алгебраическим языком, вышесказанное можно доказать гораздо легче:

— Sкруга = πr².

— Sтреугольника = (основание • высота)/2 = 2πr*r/2 = πr²

— Что означает: Sкруга = Sтреугольника.

Пусть это изобразят на моем надгробии!

В утверждении 34 трактата «О шаре и цилиндре» содержится результат, которым, как нам точно известно, более всего гордился Архимед:

Соотношение объемов цилиндра и вписанного в него шара равно 3/2. Соотношение площадей поверхности цилиндра и вписанного в него шара также равно 3/2 (см. рисунок):

Vцилиндра 3/2 Vшара

Sцилиндра = 3/2 Sшара

Он смог найти абсолютно точное отношение между объемами шара и цилиндра, в который тот вписан. Речь идет о случае, когда диаметр шара равен как диаметру основания цилиндра, так и его высоте. Объем цилиндра получается в полтора раза (3/2) больше объема шара. Такое же соотношение и у площадей их поверхностей. Как мы уже говорили, Архимед даже завещал выбить изображение шара, вписанного в цилиндр, на своем надгробном памятнике вместо эпитафии. В I веке до н. э. Цицерону, по его словам, удалось увидеть это надгробие. До нашего времени оно, к сожалению, не дошло.

Эврика! Радость открытия. Архимед - img_43.jpg

РИС.З

Эврика! Радость открытия. Архимед - img_44.jpg

РИС. 4

Чтобы получить нужный результат, Архимед использовал различные определения, постулаты и утверждения, попутно найдя важные соотношения площадей других фигур. «О шаре и цилиндре» — это трактат, состоящий из двух книг, написанных в разные годы его жизни. Первая книга служит теоретической основой для второй, представляющей собой ответы на вопросы Досифея, которому она и посвящена. Первая книга заключает в себе 44 утверждения, шесть определений и пять постулатов. Кроме того, некоторые утверждения содержат важные следствия: например, рассматриваемое соотношение между шаром и цилиндром представлено в форме следствия из двух утверждений. Речь идет об утверждениях 33 и 34.

«Утверждение 33. Поверхность любого шара в четыре раза больше площади его большого круга» (рисунок 4).

Большой круг — это круг, который делит шар на две равные половины. Данное утверждение (рисунок 4) можно пояснить следующим умозрительным образом. Если мы сложим четыре раза площадь SCM большого круга (SCM= πr²), то сумма будет равна площади поверхности всего шара SE (SE = 4πr²). Это означает, что потребовалось бы равное количество краски, чтобы покрасить поверхность шара и четыре больших круга.

«Утверждение 34. Любой шар [по объему] в четыре раза больше конуса, база которого равна большому кругу, а высота — радиусу шара».

В алгебраической записи показать данное соотношение объемов можно так (рисунок 5). Объем Vc конуса с радиусом r и высотой r равен

Vc = 1/3πr³

а объем шара VE с радиусом r равен

VE=4/3πr³.

Таким образом: VE = 4 Vc. То есть объем шара с радиусом r равен объему четырех конусов с радиусом основания r и высотой r. Другими словами, чтобы наполнить весь шар с радиусом r 4 л воды, потребуются 4 конуса с радиусом r и высотой r, вмещающие по 1 л каждый.

Эврика! Радость открытия. Архимед - img_45.jpg

РИС. 5

Эврика! Радость открытия. Архимед - img_46.jpg

РИС. 6

В качестве следствия из утверждения 34 Архимед выводит заключение, упомянутое в начале главы и действительное для объемов и площадей:

«Поверхность шара составляет 3/2 поверхности цилиндра с основанием, равным большому кругу шара, и высотой, равной его диаметру» (рисунок 6).

Чтобы вычислить площадь поверхности цилиндра, надо сложить площади его боковой поверхности и двух оснований. Боковая поверхность равна по площади прямоугольнику с основанием 2кг и высотой 2r. Следовательно, ее площадь будет составлять 4πr².

С другой стороны, два основания представляют собой круги с радиусом г, так что площадь каждого равна πr². Сложив площади боковой поверхности и удвоенную площадь основания, получаем площадь поверхности цилиндра: Sc = 6πr².

Итак, из расчетов следует, что площадь цилиндра равна шести площадям круга с таким же радиусом. И значит, один шар равен четырем кругам, а шесть кругов — полутора шарам. Нам понадобится одинаковое количество краски, чтобы покрасить шесть кругов радиусом r, полтора шара радиусом r или один цилиндр с радиусом основания r и высотой 2r. Надо прибавить, что полученные отношения действительны также и для объемов, то есть объем цилиндра составляет 3/2 объема вписанного в него шара (рисунок 7).

Легче и нагляднее представить себе это соотношение следующим образом: если один шар вмещает 2 л воды, то в описанный вокруг него цилиндр войдет 3 л.

1 ... 12 13 14 15 16 17 18 19 20 ... 27 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название