Оптический флюорит
Оптический флюорит читать книгу онлайн
Флюорит — один из удивительных минералов, широко применяющийся в металлургии, химической промышленности, в производстве керамики, в строительной индустрии. Уникальные оптические свойства флюорита легли в основу создания широкого класса исследовательских оптических приборов и технических устройств. В нашей стране была успешно решена проблема создания искусственных кристаллов оптического флюорита, полностью заменившего природные кристаллы.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
1 — контейнер; 2 — печь; 3 — медный цилиндр; 4 — опора; 5 — сопло; 6 — электрообмотка; 7 — теплоизоляция
В методе Обреимова—Шубникова контейнерами являются запаянные пробирки, из которых откачивается воздух и создается вакуум 1∙10-2 мм рт. ст. Они помещаются в цилиндрическую печь и закрепляются на держателе. Суженный конец пробирки охлаждается поступаемой через сопло холодной струей воздуха, и в нем возникает кристаллический зародыш, который затем разрастается в монокристалл, заполняя всю пробирку.
В методе Бриджмена контейнером является тигель, который перемещается в градиентной печи с помощью пружинного механизма или электромотора со скоростью, несколько меньшей скорости роста кристалла. Вместо тигля может перемещаться печь, а тигель оставаться неподвижным.
Д. Стокбаргер получил первые кристаллы флюорита, прозрачные в видимой области спектра, методом Бриджмена, используя в качестве контейнера запаянную вакуумированную ампулу с флюоритовой шихтой. Затем он несколько изменил этот метод.
Метод Стокбаргера, которым в основном выращиваются кристаллы флюорита, отличается от метода Бриджмена тем, что градиент между высокотемпературной и низкотемпературной зонами более крутой. Он достигается тем, что нагревательная печь делается из двух секций, разделенных тонкой металлической перегородкой — диафрагмой с отверстием для прохождения контейнера. Температура t1 в верхней части печи выше точки плавления вещества, t2 — несколько ниже. Нижним концом контейнер опирается на охлаждаемый металлический стержень, по которому отводится тепло. Установка должна быть вакуумируемой, т. е. в печи должен создаваться вакуум около 10-4 мм рт. ст. Выращивание может вестись в атмосфере H2F2. В качестве контейнеров обычно используются графитовые тигли или тигельные блоки достаточно больших размеров, но с относительно тонкими стенками.
Исходным материалом у Д. Стокбаргера был природный флюорит. К нему добавлялось около 2% фторида свинца, чтобы вывести продукты гидролиза, так как образующаяся по схеме CaO+PbF2 → CaF2+PbO окись свинца легко испаряется в процессе плавления. Л. М. Шамовский, как мы помним, для этой цели применял фторид кадмия.
Дальнейшее развитие метод Шамовского—Стокбаргера получил в работах И. В. Степанова и П. П. Феофилова, которыми и были по сути заложены основы промышленной техники и технологии промышленного выращивания кристаллов флюорита для оптического приборостроения.
И. В. Степановым совместно с М. А. Васильевой была сконструирована довольно эффективная высокотемпературная вакуумная установка для выращивания кристаллов флюорита, в которую входят высокотемпературная печь, системы электропитания, терморегулирования, охлаждения, вакуумная система [Степанов, Феофилов, 1957].
Вакуумная печь состоит из вакуумной камеры, нагревателя и защитных отражающих экранов. Верхняя «горячая» камера печи отделена от нижней «холодной» камеры диафрагмой. Вакуумная камера ограничена водоохлаждаемым колпаком и плитой, герметически соединенных между собой. Отражательные экраны предназначены для концентрации тепла в рабочем пространстве печи и предохранения колпака от нагрева. Тигель из тонкой молибденовой жести устанавливается в печь на подвижную подставку с водоохлаждаемым штоком — строго концентрично относительно нагревателя. Вертикальное поступательное движение штока обеспечивается электромеханической системой. Управление тепловым режимом печи осуществляется программными терморегуляторами, работающими в комплексе с термопарами. Вакуум в установке создается системой форвакуумных и высоковакуумных диффузионных насосов.
Фото 1. Винтовая дислокация в кристалле флюорита, декорированная CaO. По Р. Хейману [1979]
Фото 2. Блочность природного (а) и искусственного (б) кристалла флюорита
Фото 3. Скелетный кристалл флюорита
Фото 4. Двойник флюорита по (111)
Фото 5. Фигуры травления на грани (111) кристалла флюорита, протравленной в H3PO4 (85%) при 140° С в течение 20 мин. По Р. Хейману [1979]
слева — в нормальном свете; справа — интерференционная картина
Фото 6. Газово-жидкие включения во флюорите
Фото. 7. Друза кристаллов флюорита из Куль-и-Колона
Фото 8. Кристаллы флюорита, полученные гидротермальным методом. Увел. 10
Фото 9. Друза кристаллов флюорита, выращенных гидротермальным методом. Увел. 10
Фото 10. Крупные полости (пузыри) в искусственном кристалле флюорита, выращенном в форме пластинки. Нат. вел.
Фото 11. Монокристаллы флюорита в виде блоков-булей. Производство Народного предприятия «Карл Цейс Йена» в ГДР
Фото 12. Зоны деформаций и монокристальные участки в природном флюорите
Фото 13. Неравномерное распределение радиационной окраски в облученном пластинчатом кристалле флюорита, отражающее неоднородность теплового поля в процессе выращивания
Фото 14. Кристаллы флюорита, выращенные в виде заготовок деталей заданной формы и размеров
Фото 15. Оптические детали, изготовленные из заготовок заданной формы
Фото 16. Оптическая деталь, изготовленная из крупногабаритного кристалла искусственного флюорита
Фото 17. Нитевидный кристалл флюорита [Desai, John, 1978]
Фото 18. Оптические детали из флюоритовой керамики (слева) и монокристалла (справа)
Фото 19. Интерферограммы изделий из флюоритовой оптической керамики (справа) и монокристалла (слева). Образцы равной толщины
Фото 20. Флюоритовые окна, смонтированные на стандартных вакуумных фланцах (производство фирмы «Харшау», США)
Главное отличие установки И. В. Степанова от установки Д. Стокбаргера заключается в том, что в первой исключен нагрев нижней части печи, но зато в верхней, кроме бокового нагревателя, введен кольцевой нагреватель диафрагмы, благодаря чему увеличивается температурный градиент в зоне роста кристалла и регулируется форма изотерм кристаллизации. Установка позволяет устойчиво поддерживать температуру в пределах 800—1500° С при вакууме порядка 2—5∙10-4 мм рт. ст. Это было достигнуто благодаря выполнению ряда условий: 1) предельному уменьшению вакуумного объема за счет выноса за его пределы всех вспомогательных деталей, особенно тех. которые имеют полузакрытые полости, затрудняющие откачку газов; 2) удалению из вакуумного пространства материалов с затрудненной газоотдачей (керамики, слюды, волокнистых и порошковых термоизоляционных материалов); 3) использованию термостойких и одновременно фтороустойчивых материалов (химическая активность паров фтористых соединений при высоких температурах очень велика); 4) обеспечению перемещения тигля в вакууме без нарушения герметичности рабочей зоны.