-->

Физика в технике

На нашем литературном портале можно бесплатно читать книгу Физика в технике, Покровский Г. И.-- . Жанр: Прочая научная литература / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Физика в технике
Название: Физика в технике
Дата добавления: 16 январь 2020
Количество просмотров: 330
Читать онлайн

Физика в технике читать книгу онлайн

Физика в технике - читать бесплатно онлайн , автор Покровский Г. И.

Значение техники в жизни человечества исключительно велико. Нельзя назвать ни одной области деятельности людей, где не применялись бы те или иные технические средства.

Чтобы понять, какую роль современная техника играет в жизни человека, рассмотрим некоторые ее характерные примеры.

На одно из первых мест следует поставить производство энергии, которое растет быстрее, чем машиностроение, производство продовольствия и предметов широкого потребления. Общее количество энергии, потребляемой человечеством, стремительно увеличивается.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Зато атомные двигатели очень удобны на крупных кораблях дальнего плавания, потому что запас топлива для них ничтожен по весу и объему и время плавания кораблей ограничивается только работой машин, требующих текущего ремонта.

Атомные двигатели устанавливают и на военных подводных лодках. Подводные лодки типа «Наутилус», построенные в США, оборудованы атомной двигательной установкой и способны находиться в подводном положении в течение нескольких недель и даже месяцев. Преимущество таких лодок перед обычными подводными лодками состоит прежде всего в том, что нет необходимости часто пополнять запасы горючего, так как в сутки атомный двигатель расходует всего несколько сотен граммов ядерного топлива. Поэтому максимальная продолжительность плавания на атомной подводной лодке определяется скорее выносливостью ее экипажа ил;и необходимостью ремонта, а не запасами топлива.

Помимо использования на кораблях, атомные двигатели применяют в отдаленных и малодоступных районах, куда трудно доставлять в достаточных количествах обычное топливо.

Атомные двигатели за рубежом предполагают устанавливать на автоматических самолетах и ракетах, где нет экипажа, и поэтому не нужна тяжелая и громоздкая защита. Пока еще преждевременно считать, что атомная энергия сможет быстро заменить другие виды энергии в народном хозяйстве, потому что по своим техническим и экономическим показателям она не всегда удовлетворяет современным требованиям.

Гораздо проще и эффективнее использовать энергию урана и плутония для получения мощных взрывов. Их применение дало начало развитию атомного и термоядерного оружия. Атомным обычно называют оружие, взрыв которого происходит в результате деления ядер урана или плутония. Оружие называют термоядерным, если для усиления взрыва к атомному заряду (из урана или плутония) добавлено некоторое количество термоядерного взрывчатого вещества (в основном тяжелый водород — дейтерий) с добавлением сверхтяжелого водорода (тритий). В целом все виды средств поражения, использующие энергию атомного ядра, называют ядерным оружием (рис. 24).

В настоящее время ядерные боевые заряды являются основным видом снаряжения ракет различных типов. Исключение составляют ракеты, предназначенные для противовоздушной обороны, где преобладает снаряжение обычными взрывчатыми веществами.

Развитие техники, появление ракет и ядерных зарядов привело к созданию нового вида войск — ракетно-ядерных, новых способов вооруженной борьбы, основанных на использовании последних достижений техники.

Энергия, содержащаяся в атомных ядрах, может быть использована не только в энергетике. Используя атомную энергию, можно по-новому решать многие научные и технические задачи.

Рассмотрим некоторые примеры.

В атомных реакторах при делении ядер урана или плутония выделяется много свободных нейтронов. Чтобы ядерная реакция не переросла в катастрофический взрыв всего реактора, часть этих нейтронов поглощается кобальтом. В результате получается разновидность кобальта — изотоп кобальта. Ядра, поглотившие нейтроны, становятся неустойчивыми и через некоторое время самопроизвольно видоизменяются и выбрасывают быстро летящий электрон (бета-частицу) и фотон коротковолнового излучения (гамма-лучи). Другими словами, кобальт после поглощения нейтронов становится искусственным радиоактивным веществом.

Физика в технике - i_033.png
Рис. 24. Схемы бомб:
а — атомной; б — водородной

Излучениями химических элементов, поглотивших нейтроны, пользуются для многих научных и технических целей. Ими просвечивают отливки из металлов, электросварные швы и различные изделия. Наблюдая на экране или фотографируя результаты просвечивания, можно обнаружить трещины, раковины и другие дефекты в изделиях.

С помощью гамма-лучей искусственных радиоактивных веществ контролируют состав жидкостей и газов, передаваемых по трубопроводам, определяют уровень жидкостей в баках (рис. 25); их применяют в медицине для лечения злокачественных опухолей.

Радиоактивные вещества могут быть примешаны в небольшом количестве к различным химическим веществам. Так, если к фосфору, входящему в состав удобрений и поглощаемому растениями, добавить облученный нейтронами радиоактивный фосфор, а затем сфотографировать растения, можно сразу же установить, в какие части растения проник фосфор из удобрений, и, таким образом, изучить движение вещества в растении, а также эффективность тех или иных удобрений. Итак, перспективы использования энергии искусственных радиоактивных веществ огромны.

Физика в технике - i_034.png
Рис. 25. Контроль уровня жидкости в баке с помощью радиоактивного изотопа

Роль физики в развитии ракетной техники

4 октября 1957 года в Советском Союзе был впервые осуществлен запуск искусственного спутника Земли, положивший начало новому этапу в покорении человеком космического пространства. Запуск спутника на орбиту вокруг Земли явился результатом долгого и напряженного труда всего советского народа — рабочих, ученых, инженеров и техников. В нем, как в зеркале, отразились те технические успехи и достижения, которых добился советский народ и в его лице все человечество.

Для осуществления такой сложной задачи понадобилось решение чрезвычайно разнообразных научных и инженерных проблем, что возможно только при высоком уровне науки и техники. Рассмотрим некоторые из этих проблем.

Прежде всего необходимо было создать достаточно мощные ракетные двигатели, подобрать материалы, способные выдерживать высокие температуры. Известно, что при работе ракетного двигателя температура в камере сгорания достигает нескольких тысяч градусов, в то время как наиболее тугоплавкий металл вольфрам плавится при 3300 °C.

За границей в связи с этим было исследовано большое количество специальных систем охлаждения и конструкций двигателя. Иностранные специалисты столкнулись при этом с такими трудностями, которые привели к целой серии неудачных запусков космических объектов.

Однако необходимо не только иметь хороший и надежный двигатель для ракеты, но и уметь управлять работой этого двигателя и самой ракетой на расстоянии. Для этого может быть использована сложная радиотехническая система управления, позволяющая следить с Земли за полетом ракеты, измерять ее скорость, подавать радиокоманды на включение или выключение различных агрегатов и приборов на ракете.

Каким же образом ракета управляется в полете?

В районе старта можно расположить несколько радиолокационных станций, антенны которых автоматически наводятся на ракету. Начиная с момента старта и в течение всего полета ракеты радиолокационные станции ведут непрерывное измерение параметров траектории и режима полета.

Расстояние до ракеты измеряют следующим образом. Радиолокационная станция непрерывно излучает короткие импульсы радиоволн в направлении на ракету. Эти импульсы, дойдя до ракеты, отражаются от нее и принимаются чувствительными приемными устройствами. На экране радиолокатора возникают два всплеска: первый соответствует моменту излучения радиоимпульса, второй — моменту прихода отраженного от ракеты импульса. Расстояние между этими всплесками на экране индикатора пропорционально расстоянию от радиолокатора до ракеты. Таким образом, измеряя расстояние между двумя отметками на экране, можно определить истинное расстояние до ракеты.

Другую важную характеристику движущегося объекта (его скорость) можно вычислить, используя так называемый эффект Допплера, который заключается в том, что радиоволны, отраженные от движущегося тела, имеют несколько измененную частоту относительно частоты импульса, излученного антенной передатчика.

Перейти на страницу:
Комментариев (0)
название