Распространенность жизни и уникальность разума?
Распространенность жизни и уникальность разума? читать книгу онлайн
В книге рассматривается возникновение и развитие жизни на Земле. Исследуется влияние на жизнь различных эволюционных катастроф: падение астероидов, глобальные оледенения и т. п. Подчеркивается отсутствие признаков существования других цивилизаций в доступном для общения космосе и как следствие низкая вероятность выхода эволюции на путь, ведущий к разуму.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Сложные и почти безошибочные процедуры синтеза белка и репликации ДНК — лучшие подтверждения высокой организованности молекулярно-биологических процессов в современном мире. Они осуществляются при протягивании кодирующих матриц (соответственно, информационной РНК и разделенных родительских нитей ДНК), подобно ленте конвейера через синтезирующий аппарат, смонтированный в специальных органеллах, рибосомах и реплисомах, которые можно считать молекулярными фабриками или, что звучит более современно, нанофабриками. Редкие ошибки, допускаемые при воспроизведении ДНК ферментами ДНК-полимеразами и корректазами, приводят к включению в синтезируемую нить нуклеотидного звена, некомплементарного матричному звену. Они являются теми самыми мутациями, которые лежат в основе Дарвиновской эволюции. Если бы механизм воспроизведения ДНК стал абсолютно точным, то эволюция сошла бы на нет. Жизнь могла бы сохраняться только при неизменных условиях среды, что практически невозможно. В основных чертах, работа внутриклеточных молекулярных фабрик — синтез белка на рибосомах (Watson, 1963; Гаврилова и Спирин, 1967; Кириллов и Семенков, 1984; Spirin, 2004) и полуконсервативная репликация ДНК в реплисомах (Мосевицкий, 1976; Alberts, 1984; Kornberg, 1985) — описана более тридцати лет тому назад, однако некоторые важные детали остаются невыясненными и поныне.
Отпечатки клеток, которые уже были похожи на современных бактерий, обнаружены в осадочных породах, возраст которых достигает 3.5 млрд лет (Schopf, 1993, 2006). Есть основания полагать, что генетический код, оформившийся уже тогда или даже раньше, впоследствии не претерпел существенных изменений. Высокую стабильность генетического кода можно объяснить опасностью любой перекодировки — изменения назначения того или иного триплета. Перекодировка возможна вследствие мутирования гена тРНК в участке, представляющем антикодон. Очевидно, что мутировавшая тРНК будет узнавать в мРНК новый триплет (кодон), соответствующий измененному антикодону. При этом мутантная тРНК сохраняет специфичность по отношению к аминокислоте. Это приведет к тому, что практически все белки окажутся множественно мутантными, что неизбежно расстроит метаболизм клетки и вызовет ее гибель.
После возникновения праклетки (стволовой линии) эволюция проявилась в активном видообразовании, причем были и такие кардинальные решения, как возникновение около 1.7 млрд лет тому назад эукариотических (снабженных ядром) клеток, а затем на их основе — всего разнообразия многоклеточных организмов (см. Hedges et al., 2004). Вместе с тем, не известно ни одного случая отступления от уже присутствовавших в пралинии базовых атрибутов современной генетики и молекулярной биологии. Так, практически в неизменном виде сохранен общий для всего живого мира Земли генетический код. Общими являются также механизмы репликации ДНК, синтеза РНК (транскрипция), образования белков (трансляция) и многие другие биохимические процессы. Определенные различия, возникшие уже в разделившихся ветвях потомства праклетки и потому выявляемые при сравнительном анализе (см. Раздел 7.3), только подчеркивают универсальность главных генетических принципов и биохимических механизмов.
Было бы опрометчиво утверждать, что определенные изменения этих принципов и механизмов невозможны. Современный мир принято считать миром ДНК. Переход от мира РНК к этому миру зафиксирован в ряде сохранившихся поныне процедур, в которых при производстве специфичных для ДНК структур используются их аналоги из мира РНК. Так, предшественники ДНК дезоксирибонуклеотиды синтезируются из рибонуклеотидов, а дезоксирибонуклеотид, несущий характерное для ДНК азотистое основание тимин, образуется из дезоксирибонуклеотида, сохранившего характерное для РНК основание урацил, путем метилирования последнего. Однако переход от мира РНК к миру ДНК остался незавершенным. В современном мире ДНК переняла функцию сохранения наследственной информации, в то время как вся оперативная деятельность осталась за РНК. Поэтому более правильно именовать его РНК-ДНК-миром. Само двойное наименование указывает на промежуточное состояние этого мира. Переход к истинному миру ДНК, в котором РНК утратила бы все свои функции и была бы исключена из клеточного метаболизма, означал бы новый этап рационализации этого процесса, а следовательно, и жизнедеятельности всей клетки, т. е., казалось бы, является перспективным с точки зрения эволюции. Недавнее обнаружение у ДНК способности выполнять ферментативные функции (Garibotti et al., 2006, 2007; Lu and Liu, 2006) косвенно подтверждает потенциальные возможности мира ДНК. С другой стороны, сам факт не только сохранения в течение более 3.5 млрд лет, но и бурного развития “промежуточного” мира РНК-ДНК свидетельствует о его высокой эволюционной стабильности. Однако очевидное преуспевание мира РНК-ДНК отнюдь не означает, что эволюция не предпримет попытки перейти к следующему миру, если сочтет его более рациональным. Появление другого, эволюционно предпочтительного генетического аппарата, в котором не останется места для РНК, означало бы переход к новым формам жизни и в перспективе исчезновение нас, людей. Впрочем, такая эволюция в ее начальной стадии возможна только на уровне бактерий, а затем организмам с новой генетической системой предстояло бы пройти весь путь эволюции заново. Возможно, уже сейчас где-то на дне водоема или на почве образовался мутантный клон бактерий, начавших движение в направлении “чистого” мира ДНК, принципиальная возможность существования которого (правда, как предшественника мира РНК) уже рассматривалась (Dworkm et аl., 2003). Первоначально такие бактерии представляли бы опасность только в случае их болезнетворности. Однако развитие мира ДНК (пока, повторяем, только гипотетическое) грозит вытеснением предшествующему миру РНК-ДНК. Именно так происходило ранее — новый мир полностью замещал собою мир-предшественник. Однако ныне ситуация коренным образом изменилась. Принадлежащий миру РНК-ДНК человек вместе с разумом приобрел способность анализировать ситуацию и в случае необходимости принимать меры к ее изменению. Очевидно, что и в этом случае человечество не осталось бы в роли стороннего наблюдателя и взяло бы под контроль параллельно развивающийся “чужой” мир. Однако это уже из области фантастики.
Глава IV. ПЕРВЫЕ ПРОЯВЛЕНИЯ ЖИЗНИ НА ЗЕМЛЕ; ЖИЗНЬ ИМЕЕТ ЗЕМНОЕ ИЛИ ВНЕЗЕМНОЕ ПРОИСХОЖДЕНИЕ?
4.1. Палеонтологические и физико-химические данные о времени появления на Земле клеточных форм жизни
Возраст самых древних минералов на Земле 3800–3900 миллионов лет. К ним относятся уже образовавшиеся к тому времени в морях и океанах осадочные породы, а также более древние минералы, которые подвергались плавлению (претерпевали метаморфизм), но как бы заново рожденные в указанный период и позже серьезному метаморфизму не подвергавшиеся. Выходы древнейших пород обнаружены на разных континентах: в Австралии, Южной Африке, Гренландии, Восточной Сибири. К настоящему времени самые ранние отпечатки, которые с большой долей уверенности можно приписать клеточным организмам, обнаружены Дж. Шопфом в осадочных породах Северо-Западной Австралии, Южной Африки и Гренландии, возраст которых достигает 3.5 млрд лет (Schopf, 1993, 2006; Schopf and Packer, 1987). Естественно, эти отпечатки являются наименее сохранившимися и часто находятся на грани признания их биологического происхождения (см. Раздел 5.1). Тем не менее, общий вывод достаточно определенный: отпечатки принадлежат даже не примитивным (ранним) клеткам, а сложно организованным клеткам современного типа. Этот вывод становится еще более убедительным при прямом сопоставлении самых ранних отпечатков (возраст около 3.5 млрд лет) с более поздними (возраст 2–2.5 млрд лет) и, соответственно, лучше сохранившимися отпечатками. Обнаружены также столь же древние минералы, по составу и структуре весьма похожие на строматолиты и ныне производимые на мелководье колониями цианобактерий. Всего выявлено не менее 11 морфологических форм ранних микроорганизмов, как отдельных клеток круглой и вытянутой формы, так и клеток, организованных в форме цепочек (Schop and Barghoorn, 1967; Engel et al., 1968; Walsh and Lowe, 1985; Walsh, 1992; Schopf, 1993, 2006; Rasmussen, 2000; Shen, 2001; Tice and Lowe, 2004; Ueno et al., 2006). Некоторые ранние отпечатки показаны на Рис. 2. Присутствие 3.5 млрд лет тому назад такого разнообразия форм клеток свидетельствует, что жизнь на Земле зародилась существенно раньше (Awramik, 1992, см. также раздел 5.1).