-->

Пять возрастов Вселенной

На нашем литературном портале можно бесплатно читать книгу Пять возрастов Вселенной, Адамс Фред-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Пять возрастов Вселенной
Название: Пять возрастов Вселенной
Дата добавления: 16 январь 2020
Количество просмотров: 162
Читать онлайн

Пять возрастов Вселенной читать книгу онлайн

Пять возрастов Вселенной - читать бесплатно онлайн , автор Адамс Фред

В конце двадцатого века Фред Адамс и Грег Лафлин завладели вниманием всего мира, выделив пять временных эпох. Этих авторов считают создателями долгосрочного проекта эволюции Вселенной. Масштабы их творения, охватившего полную историю космоса от его рождения до гибели, и глубина рассмотренных научных вопросов внушают благоговейный трепет. Однако «Пять возрастов Вселенной» — не просто справочник, описывающий физические процессы, которые руководили нашим прошлым и будут формировать наше будущее, это истинная эпопея. С ее помощью можно совершить фантастическое путешествие в физику вечности, не покидая Земли. Это единственная биография Вселенной, которая вам когда-либо понадобится.

Книга предназначена для широкого круга читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 10 11 12 13 14 15 16 17 18 ... 72 ВПЕРЕД
Перейти на страницу:

Избыточное число барионов, образовавшееся таким образом, до смешного мало. На каждые тридцать миллионов существовавших антикварков во Вселенной содержалось тридцать миллионов и одинкварк обычного вещества. Именно этот феноменально малый избыток — одна частица на тридцать миллионов — жизненно важен. По мере расширения и охлаждения Вселенной кварки и антикварки аннигилируют друг с другом. И только лишние кварки — те, которым не удается найти антиматериальную пару для аннигиляции, — остаются, чтобы в конечном итоге заполнить нашу Вселенную веществом.

Когда Вселенная, наконец, становится достаточно прохладной, кварки объединяются в сложные частицы, называемые адронами; к ним относятся знакомые нам протоны и нейтроны. Этот фазовый переход происходит, когда Вселенная переживает температуру в один триллион градусов Кельвина и достигает плотности ядерного вещества, в один квадрильон раз превышающей плотность воды. Вот на этом фоне и рождаются протоны с нейтронами. Эти основные кирпичики, синтезированные в первую микросекунду истории, не только дожили до сегодняшнего дня, наступившего около десяти миллиардов лет спустя, но и будут жить еще долго-долго. Эти частицы проживут, как минимум, в десять миллиардов триллионов (10 22) раз дольше современного возраста Вселенной, а возможно, даже еще дольше.

Темнота ночного неба

Конечный возраст, которым наделила Вселенную современная космология, разрешает одну классическую проблему: «Почему ночью небо темное?». Первым важность этого вопроса осознал, наверное, Иоганн Кеплер в 1600-е годы, хотя широкую известность эта проблема получила только в девятнадцатом веке, благодаря работе Г.В. Ольберса. В 1823 году Ольберс, немецкий астроном, представил труд, в котором впервые описал эту проблему, впоследствии получившую название парадокса Ольберса.

На первый взгляд, ответ кажется очевидным: ну, конечно, ночное небо темное! Как-никак Солнце не освещает небо по ночам. Однако если поразмыслить чуть дольше, понимаешь, что все не так просто. Рассмотрим портрет Вселенной девятнадцатого века: статическая, бесконечная Вселенная, демонстрирующая обычное трехмерное пространство евклидовой геометрии. А теперь представьте, что вы смотрите на ночное небо. Следуя по линии зрения в любомнаправлении, рано или поздно, вы должны наткнуться на поверхность звезды. Но звезды ярко светят. Значит, ночное небо должно светиться от лучистой энергии, испускаемой поверхностью звезд, ярких, как Солнце.

Можно подойти к этому вопросу и с другой стороны. В этой устаревшей модели Вселенной небо изобилует бесконечным количеством звезд. Чем дальше звезды находятся от Земли, тем более тусклыми они нам кажутся. Их излучение ослабевает обратно пропорционально квадрату расстояния (r 2) между звездой и наблюдателем. Однако объем Вселенной, а следовательно, и общее количество звезд возрастает пропорционально кубу этого расстояния (г 3). Даже несмотря на то, что с увеличением расстояния излучение звезд ослабевает, этот эффект компенсируется увеличением общего числа звезд. Если эта модель правильна, то ночное небо должно быть очень ярким.

Теперь мы знаем, что эта старомодная парадигма, описывающая бесконечную статическую Вселенную, попросту говоря, ошибочна. Вселенная, на самом деле, имеет конечный возраст и совсем не евклидову геометрию пространства-времени. Поскольку пока что прошло всего десять миллиардов лет, мы можем наблюдать только те звезды, которые находятся на большом, но все же строго конечном расстоянии в десять миллиардов световых лет. Видимая Вселенная содержит большое, но конечное число звезд: около одной тысячи миллиардов миллиардов (10 21). Эти звезды вносят свой вклад в видимую яркость ночного неба, которое светится очень слабо. И все же ночное небо значительно темнее, чем поверхность звезды.

На темноту ночного неба влияет и расширение Вселенной. В силу того что пространство-время расширяется, удаленные звезды вносят меньший вклад в яркость неба, чем это предполагалось согласно предшествующему аргументу Евклида. Далекие звезды в удаленных галактиках уносятся от нас со скоростями, близкими к скорости света. Их свет, приходящий из самых отдаленных уголков видимой Вселенной, невероятно растягивается, вследствие чего снижается его интенсивность.

Темнота ночного неба имеет глубочайшие следствия для развития и продолжительного существования жизни. Если бы Вселенная не имела конечного возраста и не расширялась, то ночное небо действительно сверкало бы как поверхность звезды. В таких условиях звездная эволюция претерпела бы радикальные изменения, а возникновение и развитие жизни на планетах было бы практически невозможно. Если бы нашу Солнечную систему переместили в такую гипотетическую яркую Вселенную, то Солнце и планеты внезапно оказались бы погруженными в тепловую ванну излучения, столь же горячую, сколь и поверхность звезды. Так как, в силу второго закона термодинамики, тепло должно распространяться из горячих областей в холодные, Солнце стало бы нагреваться, чтобы распространить свою энергию в пространство. Сами планеты прогрелись бы до температур звезд, а это тысячи градусов Кельвина, и постепенно были бы стерты мощным и безжалостным потоком фонового света.

Наблюдаемая темнота ночного неба служит веским доказательством конечного возраста Вселенной. Это осознание воистину замечательно. И почти настолько же замечательно то, что этот важный ключ проглядели ученые, до двадцатого века занимавшиеся парадоксом Ольберса. Идея о статической и неизменной Вселенной прочно укоренилась в культуре. Простое и правильное решение этого парадокса оставалось непризнанным, пока Хаббл не открыл, что Вселенная расширяется, а Эйнштейн не создал теорию, которая допускала, и даже предсказывала, расширяющееся пространство-время.

Нуклеосинтез

Следующим важным достижением зарождающейся Вселенной было образование маленьких сложных ядер типа гелия, дейтерия и лития. Ядра этих легких элементов образовались в реакциях ядерного синтеза, произошедших в первые несколько минут времени. Более крупные ядра, включая углерод и кислород, дающие основу для жизни, образовались гораздо позднее в горячих недрах звезд (о чем рассказывается в следующих главах). Образование тяжелых элементов из более легких, называемое нуклеосинтезом, значительно изменяет материальное содержимое Вселенной.

Энергия — это основная концепция, управляющая нуклеосинтезом — процессом ядерного синтеза. До этого момента более крупные ядра имеют меньшую массу-энергию покоя на частицу, чем составляющие их частицы по отдельности. Например, масса-энергия покоя ядра гелия, состоящего из двух протонов и двух нейтронов, меньше, чем суммарная масса-энергия покоя этих четырех частиц, существующих по отдельности. Этот дефицит массы-энергии ядра гелия должен иметь какое-то объяснение. В процессе реакции ядерного синтеза, в результате которой образуется ядро гелия, недостающая масса превращается в энергию и высвобождается в соответствии со знаменитой формулой Эйнштейна Е = mс 2. Механизм ядерного синтеза лежит в основе водородных бомб, образования энергии в недрах Солнца и нуклеосинтеза в ранней Вселенной.

Протоны и нейтроны, образующие ядро атома, удерживает вместе сильное взаимодействие, которое притягивает составляющие ядро частицы, но действует лишь на очень коротких расстояниях. На больших расстояниях сильнее оказывается электромагнитная сила, поскольку она действует в более широком диапазоне. Например, при взаимодействии протона с дейтроном (простое ядро, содержащее один протон и один нейтрон), электромагнитная сила является силой отталкивания и действует как преграда для ядерного синтеза, отталкивая взаимодействующие частицы друг от друга. Для успешного слияния протона и дейтрона они должны оказаться достаточно близко друг от друга, так чтобы сильное взаимодействие подавило электромагнитную силу. При достаточно высоких температурах эти частицы обладают достаточной кинетической энергией, чтобы добиться необходимой близости. Однако температура не должна быть слишком высокой; в противном случае только что синтезированные ядра разлетятся сразу же после возникновения. Необходимость соблюдать этот компромисс задает диапазон температур, при которых могут происходить реакции ядерного синтеза.

1 ... 10 11 12 13 14 15 16 17 18 ... 72 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название