-->

Космические твердотопливные двигатели

На нашем литературном портале можно бесплатно читать книгу Космические твердотопливные двигатели, Назаров Герман Алексеевич-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Космические твердотопливные двигатели
Название: Космические твердотопливные двигатели
Дата добавления: 16 январь 2020
Количество просмотров: 201
Читать онлайн

Космические твердотопливные двигатели читать книгу онлайн

Космические твердотопливные двигатели - читать бесплатно онлайн , автор Назаров Герман Алексеевич

Брошюра посвящена созданию и использованию космических твердотопливных двигателей. Рассматриваются некоторые типы таких двигателей, а также возможные перспективы их использования в космонавтике.

Брошюра рассчитана на всех тех, кто интересуется современными проблемами космической техники.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Хотя РДТТ и прост по своему устройству, его надежная работа возможна лишь при строгом соблюдении хорошо отлаженных технологических процессов, используемых в изготовлении двигателя. Наряду с усовершенствованием этих процессов ведется поиск средств и методов, гарантирующих надежный контроль качества изготавливаемых РДТТ. Последней новинкой в этой области является электронное сканирующее устройство, в состав которого входят источник излучения высокой энергии, приемный экран и чувствительная телекамера. Применением такого устройства достигается контроль качества РДТТ по всей поверхности корпуса с регистрацией результатов на видеоленту.

Новые области применения РДТТ. До настоящего времени твердотопливные двигатели мало применялись на борту космических аппаратов, совершающих полеты к другим планетам. Одна из причин того, почему РДТТ почти не используются при выводе КА с межпланетных траекторий на околопланетные орбиты, состоит в чрезмерном ускорении, которое сообщалось бы конструкции и аппаратуре конкретных КА при работе РДТТ. Необходимо, таким образом, чтобы двигатель развивал небольшую тягу в течение довольно продолжительного времени. В этом направлении в последние годы достигнут значительный прогресс, и становится возможным создание эффективных РДТТ, функционирующих в течение 250 с. Требуемый невысокий уровень тяги обеспечивается, в частности, достижением (за счет подбора определенного состава и отработки технологии изготовления заряда) очень малой скорости горения топлива (порядка 3 мм/с), поддержанием низкого рабочего давления в камере (0,7 МПа и менее), а также горением заряда по торцевой поверхности.

Эти и другие достижения в области РДТТ, о которых рассказывалось выше, открывают возможности для более широкого применения твердотопливных двигателей как в ближнем, так и в дальнем космосе. Проектные проработки показывают, например, что РДТТ может оказаться вполне подходящим двигателем для старта аппарата с образцом грунта с марсианской поверхности.

Перспективы применения РДТТ в космонавтике во многом зависят от того, удастся ли разработать приемлемые методы и средства для осуществления многократного выключения-включения РДТТ в полете и регулирования величины тяги. Быстродействие РДТТ, сочетающееся с другими положительными качествами, привлекает к этим двигателям особое внимание разработчиков реактивных систем управления траекторией полета и пространственным положением КА. Однако двигатели этих систем должны включаться многократно — до многих сотен тысяч раз, например, для связных спутников Земли, рассчитанных на несколько лет работы.

Принципиально простым способом обеспечения многократного срабатывания РДТТ представляется использование многосекционного (так называемого вафельного) заряда, в котором соседние секции разделены термоизоляционными прокладками, причем каждая секция имеет свою систему воспламенения. Однако ввиду усложнения, утяжеления и удорожания конструкции РДТТ при увеличении количества секций их число на практике в лучшем случае может достигать нескольких десятков (такие экспериментальные РДТТ созданы и испытаны на стендах).

Попытки преодолеть существующие для РДТТ ограничения по количеству включений привели к созданию совершенно необычных экспериментальных конструкций. Одна из них напоминает детский пистолет, стреляющий пистонами, нанесенными на ленту. «Пистонами» являются миниатюрные РДТТ тягой в несколько ньютонов, сгорающие в течение примерно 0,1 с. Соответствующей подачей таких «пистонов» достигается требуемый в данный момент полный импульс тяги. Описанное устройство не может конкурировать, однако, с современными ЖРД малой тяги, которые с успехом используются в тех областях, где РДТТ до сих пор почти или совсем не применялись.

Что касается регулирования величины тяги РДТТ, то наиболее разработанный в настоящее время метод состоит в изменении площади горловины сопла путем механического перемещения профилированной иглы («центрального тела»), установленной по оси сопла. Поскольку изменение проходного сечения сопла приводит к противоположному изменению величины давления в камере, то зависимость тяги от перемещения иглы имеет весьма сложный характер. При соответствующем составе топлива полным открытием горловины сопла можно обеспечить гашение заряда. Повторное включение РДТТ можно произвести при помощи многозарядного воспламенителя. В космических РДТТ описанная система регулирования тяги, однако, не применяется, так как она приводит к существенному усложнению и утяжелению конструкции (а также другим нежелательным последствиям).

Тягу РДТТ можно регулировать в определенных пределах и путем ввода в камеру газа или жидкости. Недостатки же этого способа связаны с наличием в двигательной установке вспомогательного рабочего вещества.

РДТТ и проблема охраны окружающей среды. Перспективы развития и применения твердотопливных двигателей связаны самым непосредственным образом с проблемой охраны окружающей среды, чему в настоящее время уделяется все большее внимание. Эффективные топлива, используемые в современных РДТТ, в этом отношении представляются далеко не безупречными. Так, например, при каждом пуске аппарата «Спейс Шаттл» в атмосферу должно выбрасываться ~ 1000 т продуктов сгорания твердого топлива, содержащих свыше 100 т газообразного хлористого водорода. Значительная часть этих продуктов сосредоточивается в облаке, которое перемещается горизонтально под действием ветра на высоте ниже 1–1,5 км, причем нижняя часть этого облака находится вблизи земли. Высказывались опасения, что в случае повышенной влажности атмосферы возможно выпадение токсичных, кислотосодержащих осадков из облака на расстояниях до 100 км от стартового комплекса. В прошлом уже наблюдались случаи поражения растительности осадками, образовавшимися вследствие работы крупных РДТТ, на расстояниях в несколько километров. В этой связи особое значение приобретает учет метеорологических условий в районе старта. Высказывалось также опасение, что продукты сгорания РДТТ при частых пусках аппаратов «Спейс Шаттл» могут привести к разрушению озонного слоя верхней атмосферы. (Механизм этого разрушения, носящий каталитический характер, опять-таки связан с хлористым водородом, из которого образуется вследствие фотолиза свободный хлор, воздействующий на озон.) Детальные исследования проблемы не подтвердили этого опасения. Тем не менее были рассмотрены другие топлива, которые при необходимости можно будет использовать вместо принятых.

Что касается сжигания ненужных остатков твердых топлив, то в ряде районов США местные власти уже запретили это делать. В поисках выхода из создавшейся ситуации сделаны обнадеживающие попытки расщепить смесевое топливо на отдельные компоненты (окислитель, горючее-связующее, алюминий). Предложено также использовать остаток алюминия и горючего-связующего или измельченное топливо пр, и изготовлении взрывчатых веществ.

Опасность для окружающей среды представляют не только продукты сгорания РДТТ, но и вещества, вовлеченные в технологические процессы изготовления твердых топлив: асбестовые и другие волокна, органические отвердители и растворители и т. д. В ближайшие 10–20 лет ожидается повышение требований к указанным веществам и процессам в отношении их безопасности, что может привести к удорожанию РДТТ. Однако и это обстоятельство не рассматривается в настоящее время как фактор, могущий оказать отрицательное влияние на развитие и применение РДТТ.

Итак, можно с достаточной уверенностью утверждать, что в обозримом будущем космические РДТТ не утратят своей роли и что рациональное сочетание РДТТ с ЖРД в ракетно-космических системах будет по-прежнему являться важной предпосылкой развития космонавтики. В заключение скажем несколько слов о ближайших перспективах применения космических РДТТ. Они связаны в первую очередь с космическими транспортными системами, разрабатываемыми в США. Эти системы включают многократно используемые «челноки» в сочетании с космическими буксирами и менее мощными ракетными блоками (которые должны использоваться в тех случаях, когда применение буксиров окажется нерентабельным).

Перейти на страницу:
Комментариев (0)
название