Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

На нашем литературном портале можно бесплатно читать книгу Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?, Коллектив авторов-- . Жанр: Прочая научная литература / Биографии и мемуары / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
Название: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
Дата добавления: 15 январь 2020
Количество просмотров: 431
Читать онлайн

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? читать книгу онлайн

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - читать бесплатно онлайн , автор Коллектив авторов

В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку. В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность. Этот принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне хотелось бы думать, что Луна существует, даже если я на нее не смотрю».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 10 11 12 13 14 15 16 17 18 ... 33 ВПЕРЕД
Перейти на страницу:

Согласно его гипотезе, «в то время как в классической теории x(t)y(t) всегда равно y(t)x(t), это соотношение необязательно выполняется в квантовой теории». Несмотря на всю странность этого вывода, Гейзенберг решил изложить свои идеи, расчеты и результаты письменно. Он передал рукопись Борну и попросил опубликовать ее, если тот будет согласен с написанным. После этого молодой ученый сразу же отправился в далекий путь: его ждали конференции в Голландии и Англии, отпуск в Скандинавии в компании скаутов и продолжение работы в Копенгагене.

Странное правило умножения, описанное Гейзенбергом, сбило Борна с толку. Он обдумывал новую модель несколько дней и наконец понял, что уже видел это правило, когда изучал математику в университете: таблицы Гейзенберга соответствовали матрицам, произведение которых не обладает коммутативностью. После того как Борн убедился в правильности рассуждений Гейзенберга, он отправил рукопись в «Физический журнал», где она была опубликована в сентябре 1925 года.

Вместе с новым ассистентом Паскуалем Йорданом Борн изложил теорию Гейзенберга на языке матриц. В объемной статье исследователи объяснили матричные методы и адаптировали их к квантовой физике. Кроме того, они переопределили переменные и функции классической механики с помощью квантовых матриц и обнаружили матричные аналоги почти для всех уравнений механики. Взяв за основу абстрактные матричные выражения, Борн и Йордан получили формулы расчета энергии стационарных состояний. Все это позволило «ожидать, что на основе новой теории будут сформулированы четкие физические законы». Борн и Йордан обнаружили крайне любопытное соотношение между матрицами, обозначающими положение и импульс частицы. Напомним, что импульс равен произведению массы на скорость, и в классической механике высокого уровня использовать импульс удобнее, чем скорость. Как правило, положение частицы и ее импульс обозначаются буквами q (вместо х, которую мы использовали до этого) и р соответственно. Обозначив соответствующие матрицы заглавными буквами, Борн и Йордан записали найденное ими соотношение следующим образом:

Q•P-P•Q = ihI,

где i = sqrt(-1) – мнимая единица, h = h/2π – редуцированная постоянная Планка, I- единичная матрица. Элементы единичной матрицы, расположенные на главной диагонали, равны единице, все прочие – нулю. Это соотношение любопытно тем, что в нем присутствует число i. Оно было описано в XIX веке Коши и Гауссом и иногда используется в физике для упрощения некоторых формальных расчетов, однако в этой формуле мнимая единица появилась совершенно неожиданно, и в этом – еще одна особенность квантовой механики.

Матрицы

Матрица – это таблица с числами, которые обозначаются двумя индексами: первый указывает строку, в которой находится число, второй – столбец. К примеру, квадратная матрица из двух строк и двух столбцов выглядит так:

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - pic_24.jpg
Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - pic_25.jpg

Сложение и вычитание матриц интуитивно понятны: для этого нужно почленно сложить или вычесть элементы исходных матриц. Произведение матриц рассчитывается по особому правилу:

При умножении матриц порядок множителей, в общем случае, влияет на конечный результат. К примеру, произведения матриц

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - pic_26.jpg

равны

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - pic_27.jpg

Эти матрицы различаются между собой. Разностью этих произведений будет матрица

Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - pic_28.jpg

В общем случае, в квантовой механике используются квадратные матрицы бесконечной размерности, то есть имеющие бесконечное число строк и столбцов.

В сентябре Борн и Йордан отправили копию своей работы Гейзенбергу, который к тому времени уже находился в Копенгагене. Молодой ученый показал работу Бору со словами: «Здесь полно матриц, и я не представляю, что они означают». В результате Гейзенбергу пришлось срочно изучить матричную алгебру. Стремясь сформулировать новую механику, он переписывался с Борном и Йорданом. Результатом совместной работы стала статья под названием «О квантовой механике, часть II», законченная в ноябре 1925 года и подписанная Борном, Гейзенбергом и Йорданом в алфавитном порядке. Это была знаменитая Dreimannerarbeit («работа трех») с изложением основ новой теории на языке математических выкладок. В статье были по-новому сформулированы начальные постулаты квантовой теории: в ней описывалось существование стационарных энергетических состояний атомов и квантовые скачки между состояниями, сопровождающиеся излучением или поглощением света. Авторы называли свою теорию «истинной теорией дискретного». Она позволяла провести все необходимые расчеты для любой системы с периодическим движением и описать свойства атомов с помощью новой матричной механики.

Многие физики отнеслись к матричной механике прохладно; собственно, большинство из них даже не знали, что такое матрица. Эйнштейн писал своему другу Мишелю Бессо:

«Самым интересным из недавних теоретических результатов является теория квантовых состояний Гейзенберга, Борна и Йордана. Это по-настоящему волшебная таблица умножения, где на смену декартовым координатам пришли бесконечные матрицы. Она крайне любопытна и ввиду огромной сложности в достаточной мере защищена от опровержений».

Матричная теория была слишком абстрактной, и большинство ученых с облегчением приняли более доступную волновую механику, описанную Шрёдингером несколько месяцев спустя.

Иные формулировки квантовой механики

Напомним, что в 1923 году Луи де Бройль предположил, что электрону свойственен корпускулярно-волновой дуализм, то есть он ведет себя и как частица, и как волна, и разрешить этот дуализм можно с помощью законов оптики. При описании интерференции и дифракции света необходимо использовать волновые уравнения физической оптики. Однако при описании движения света в различных средах достаточно рассмотреть прямолинейные траектории, как если бы речь шла о движении частиц с разной скоростью в зависимости от среды. Задачи этого типа решаются в геометрической оптике. С XIX века было известно, каковы геометрические пределы физической оптики и когда следует рассматривать лучи света вместо волн. Де Бройль предположил, что в этом математическом формализме классической физики можно найти аналогию с квантовым дуализмом. Австрийский физик Эрвин Шрёдингер решил тщательно рассмотреть эту аналогию для квантовых частиц, в частности электрона. В 1926 году он опубликовал шесть статей, в которых описал основы иной формулировки квантовой механики – волновую механику. В ее первом абзаце было сказано:

«В этой статье мне прежде всего хотелось бы показать на простейшем примере нерелятивистского свободного атома водорода, что обычные правила квантования могут быть заменены другими положениями, в которых уже не вводится каких-либо «целых чисел». Эти целые числа выводятся естественным образом, подобно целому числу узлов при колебаниях струны. Это новое представление может быть обобщено, и я верю, что оно тесно связано с истинной природой квантования».

Уравнение Шрёдингера

В формулировке, которая была предложена Эрвином Шрёдингером в 1925 году, состояние системы взаимодействующих частиц полностью описывается ее волновой функцией (ψ), которая зависит от времени и координат частиц. Если опустить релятивистские эффекты, то волновая функция будет решением уравнения

1 ... 10 11 12 13 14 15 16 17 18 ... 33 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название