Журнал «Вокруг Света» №10 за 2007 год
Журнал «Вокруг Света» №10 за 2007 год читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Оценочная функция
Если в целом сформулировать, как работает любая система ИИ, то можно сказать, что в ее основе лежит сложная оценочная функция. Какой ход лучше, тратить ли время на изучение его последствий? На какую букву больше похоже вот это пятно на бумаге? Покупать или продавать акции? Идти в атаку или укреплять оборону? Такой взгляд демистифицирует понятие ИИ. Так что, если вам скажут, что ваша стиральная машина оснащена интеллектуальной системой гашения вибраций, вполне возможно, что так оно и есть.
В простых случаях оценочную функцию тем или иным способом задает разработчик системы. В более сложных она вырабатывается в ходе обучения на примерах с заранее известным правильным ответом. Тривиальную систему ИИ каждый может создать сам с помощью электронных таблиц вроде Excel. Допустим, вы хотите купить ноутбук. Загрузили из Интернета базу данных с тысячами предложений, да еще каждый день поступают новые. Читать список подряд бесполезно — уже после сотни строк начинаешь путаться. Да и слишком много важных параметров приходится держать в голове. Но в этом нет необходимости: обозначьте каждую функцию числовым значением (например: есть Wi-Fi — 1, нет — 0). Задайте каждому параметру определенный вес и напишите оценочную функцию по схеме: оценка = параметр1*вес1 + параметр2*вес2 +... и так далее. Самым важным придайте большой вес, остальным — поменьше, а недостаткам (например, цене) — отрицательный. Поколдуйте вечерок с этими весами, пока не почувствуете, что система не допускает явных ошибок, и дальше она будет автоматически оценивать все предложения. Последнее слово, конечно, за вами, но вот просматривать весь список уже не нужно — достаточно изучить лишь лидеров доморощенного хитпарада. Причем веса можно в любой момент пересмотреть, если ваши предпочтения изменились.
Получилась настоящая система ИИ для поддержки принятия решений, пусть и очень примитивная. В процессе настройки вы заложили в нее свой опыт. А если при этом вы еще посоветовались со специалистами и учли их мнение, то можно уже говорить об экспертной системе. Сходным образом, но, конечно, на более обширных и надежных данных, работают медико-диагностические экспертные системы: по формализованному анамнезу они выдают список диагнозов с условной оценкой вероятности каждого. Программы, фильтрующие спамерские письма, оценивают каждое послание по характерным для спама словам, адресам и другим признакам, каждому из которых приписан свой вес. Спамеры, наоборот, стараются обмануть ИИ фильтрующих программ: пишут с ошибками, заменяют цифры буквами, добавляют в письма посторонние тексты, чтобы фильтр не распознал на их фоне рекламу. Системы ИИ непрерывно совершенствуются с обеих сторон.
Тест Тьюринга
В 1950 году один из основоположников кибернетики, Алан Тьюринг, предложил тест, который должна пройти машина, чтобы ее можно было назвать мыслящей. Пусть эксперт обменивается тестовыми сообщениями с двумя собеседниками, один из которых человек, а другой — компьютер. Задача эксперта — за время разговора отличить машину от человека. Тьюринг ожидал, что к 2000 году компьютеры с памятью около 100 Мбайт смогут в 30% случаев обманывать эксперта в течение 5 минут. Машины уже стали много мощнее, но пока ни один робот не прошел тест Тьюринга. Впрочем, уже есть программы, которым под силу некоторое время выдавать себя за человека, если собеседник не ожидает, что общается с роботом. Такие программы находят применение в компьютерных играх, чатах и даже в рекламе. Если вы владеете английским, попробуйте пообщаться с ALICE ( www.alicebot.org ), трехкратным победителем в соревнованиях разговаривающих программ. К сожалению, на русском языке ничего близкого по уровню пока нет.
Роботы-автомобили с искусственным интеллектом перед гонкой DARPA по пересеченной местности в 2005 году. Синий — победитель Stanley — от Стэнфордского университета, красные — H1ghlander и Sandstorm — от Университета Карнеги-Меллона
Ошибки — путь развития
Часть спама («мусорной» электронной почты) просачивается через любую защиту, но гораздо хуже, что иногда в отвалы попадают важные деловые письма. Ошибки — неотъемлемый атрибут интеллекта, в том числе искусственного, поскольку именно на ошибках он формируется. Простейший случай обучения — та самая подстройка весов, которой мы занимались при подборе ноутбука. Это — обучение вручную. Спам-фильтры более самостоятельны в учебе: вы лишь указываете им на ошибки, а они сами уточняют веса признаков спама.
Еще автономнее интеллектуальные роботы, играющие на бирже. Они сами оценивают эффективность своих действий по достигнутым результатам и корректируют поведение. Лучшие современные системы такого типа уже не уступают трейдеру средней квалификации. Они, конечно, тоже ошибаются, но по характеру ошибки робота отличаются от ошибок человека, хотя бы потому, что первый никогда не пойдет на поводу у эмоций. А бывает и так, что сами разработчики не понимают, почему робот принял определенное решение, и предполагают ошибку, а спустя некоторое время глядишь — он оказывается прав. Поневоле возникает ощущение, что мы действительно имеем дело с разумом, хотя и сильно отличающимся от человеческого.
Быть может, эту разницу можно нивелировать, если попробовать воспроизвести принципы организации человеческого мозга? Обычно в науке, если удается смоделировать явление, то его основные принципы можно понять, исследуя модель. Эта идея привела к построению и изучению нейронных сетей — систем ИИ, устроенных по аналогии с мозгом человека. Нейроны (в модели это несложные однотипные программные объекты) соединяются между собой в сеть квазислучайным образом. Каждый нейрон определенным образом реагирует на сигналы, поступающие на его входы. Одни сигналы возбуждают нейрон, другие тормозят возбуждение. В результате на его выходе формируется сигнал, передаваемый другим нейронам. На входы некоторых нейронов подается внешняя информация, подлежащая обработке, а на выходах некоторых других формируется результат. Поскольку сеть соединена случайным образом, ее ответы поначалу тоже будут случайны, то есть бессмысленны. Тут и начинается процедура обучения.
Всякий раз, когда сеть вырабатывает ошибочный ответ, самые главные нейроны, которые формируют окончательное решение на выходе сети, получают наказание — штраф. Они разбираются, какой из нейроновподчиненных способствовал принятию неправильного решения, и снижают такому уровень доверия, а тем, кто «голосовал» против, рейтинг повышают. Получившие по заслугам нейроны второго уровня аналогичным образом наводят порядок в своем хозяйстве, и так до тех пор, пока не дойдет до самых первых нейронов (предполагается, что циклов в нейронной сети нет). После этого процедуру обучения повторяют на новом примере.
Через некоторое время сеть (если она обладает достаточной мощностью) научается правильно реагировать на предъявляемые сигналы. Подобные сети используются, например, в системах распознавания текста. Отсканированная страница разбивается на строки, строки — на символы, а дальше по каждому символу принимается решение — какой букве он соответствует, иначе — какой ее порядковый номер в алфавите. Одна и та же буква каждый раз выглядит на бумаге немного по-другому — из-за различий в шрифте, соседства других букв, неоднородности бумаги и множества других причин. Обученная нейронная сеть начинает узнавать в несколько различающихся, но все же похожих картинках одну букву и отличать ее от других.
Но как ей это удается? Возьмем отдельный нейрон из середины сети и попробуем понять: почему он реагирует на сигналы соседей так, а не иначе? Увы, в сложной сети это совершенно безнадежное дело. Ее «опыт» не локализован в отдельном нейроне, им обладает только сеть в целом. Можно перепрограммировать нейрон и посмотреть, какие ошибки станет делать сеть. Так изучают и человеческий мозг — смотрят, какие изменения вызывает стимуляция тех или иных центров. Но, даже поняв функции отдельных нейронов, обычно нельзя объяснить, почему эти функции выполняются именно при такой настройке.