Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Еще больше энергии сейчас получается из угля с помощью последнего усовершенствован- ного газового двигателя, экономичность которого в среднем примерно вдвое больше, чем у луч- шего парового двигателя. Введению газового двигателя очень сильно способствует важность газовой индустрии. С ростом использования электрического света больше и больше газа при- меняется в целях получения нагревательной и движущей энергии. Часто газ добывается вбли- зи угольных шахт и переправляется в удаленные места его потребления.
Это дает существенную экономию и в расходах на транспортировку, и в использовании энергии топлива. При нынешнем положении дел в механике и электричестве самым рациональным способом получения энергии из угля очевидно является производство газа рядом с залежами угля, и использование его, прямо на месте или где-то еще, для генерации электричества для индустриального использования в динамо, приводимых в движение газовыми двигателями. Коммерческий успех такого завода сильно зависит от производства газовых двигателей большой номинальной мощности, что, судя по энергичной активности в этой области, скоро произойдет. Вместо непосредственного потребления угля, как обычно, из него следует производить газ и сжигать его для экономии энергии.
Но все эти усовершенствование не могут быть ничем, кроме переходных этапов в развитии в направлении чего-то более совершенного, потому что в конечном итоге мы должны научиться получать электрическую энергию из угля более прямым способом, не содержащим в себе больших потерь его тепловой энергии. Можно ли окислять уголь в холодном процессе, — пока еще остается под вопросом. Его соединение с кислородом всегда идет с выделением тепла, а может ли соединение углерода с каким-либо другим элементом быть напрямую преобразовано в электрическую энергию, пока еще не выяснено. При определенных условиях азотная кислота сжигает углерод, генерируя электрический ток, но раствор при этом не остается холодным. Предлагались и другие пути окисления угля, но они не дали новых перспектив получить эффективный процесс. Я потерпел полную неудачу, хотя возможно и не настолько полную, как те некоторые, кто "изобрел" холодную угольную батарею. Это задача в основном для химика. Не для физика, который все свои результаты рассчитывает заранее, и поэтому, если эксперимент ставится, то провалиться он не может. Химия, хотя это и позитивная наука, пока еще не располагает такими позитивными методами разрешения проблем, которые есть в распоряжении для решения многих физических проблем. Успех, если он вообще возможен, достигается путем упорных попыток нежели посредством дедукции или расчетов. Тем не менее, скоро настанет время, когда химик сможет следовать четко прочерченному и заблаговременно проложенному курсу, когда процесс достижения им нужного результата станет чисто конструктивным. Холодная угольная батарея даст огромный импульс развитию электричества; от нее очень недалеко до осуществления летающей машины, и она чрезвычайно будет способствовать развитию автомобиля. Но эти и многие другие проблемы решаются еще лучше, и еще более научным образом, световой аккумуляторной батареей.
ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ
Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в известняке, и можно приводить в движение машины путем освобождения угольной кислоты с помощью серной кислоты или другим способом. Я однажды уже сконструировал такой двигатель, и он вполне удовлетворительно работал.
Но какие бы источники энергии у нас в будущем ни появились, мы должны, поступая рационально, получать ее без затрат какого-либо сырья. К этому заключению я пришел очень давно, и представляется возможным достичь этого, как отмечалось раньше, только двум путями — либо обратить на пользу энергию солнца, запасенную в окружающей среде, либо передавать, через эту среду, солнечную энергию на расстояния из тех мест, где ее можно получать без затрат сырья. В те времена я сразу отмел последний способ как полностью неосуществимый, и обратил все внимание на изучение возможностей первого.
Хотя и трудно в это поверить, но факт, что человек с незапамятных времен имел в своем распоряжении довольно хорошую машину, которая позволяла получать энергию из окружающей среды. Эта машина — ветряк, ветряная мельница. Вопреки распространенному мнению, ветер может дать довольно значительную энергию. Сколько обманувшихся изобретателей потратили годы своей жизни на попытки "обуздать прилив", и некоторые даже предлагали для получения энергии сжимать воздух за счет энергии прилива или волн, никогда не понимая смысла образа старой ветряной мельницы на холме, которая печально крутит своими крыльями и их не остановить. Факт состоит в том, что приливной или волновой мотор в целом имеет мало шансов коммерчески конкурировать с ветряком, который до сих пор является лучшей машиной, и позволяет получать гораздо более простым способом гораздо больше энергии. В старые времена энергия ветра была для человека неоценимой даже одним тем уже, что ничто другое не давало ему возможности пересекать моря, и даже сегодня это остается очень важным фактором для путешествий и транспорта. Но этот простой способ использования солнечной энергии имеет сильные ограничения. Для заданной величины полезного выхода машины получаются большими, и энергия неравномерная, поэтому нужно ее накапливать, что удорожает установку.
Правда, намного лучшим способом получать энергию было бы использовать солнечные лучи, которые постоянно падают на Землю, принося энергию с максимальной скоростью в четыре миллиона лошадиных сил на квадратную милю. Хотя средняя энергия, получаемая на квадратную милю в любом месте в течение года составляет лишь малую часть этой величины, тем не менее открытие некоего эффективного способа использования энергии лучей дало бы неисчерпаемый источник энергии. Когда я начинал исследовать этот предмет, единственный способ, который был мне известен — это применение некоторого теплового или термодинамического двигателя, приводимого в движение летучей жидкостью, испаряемой в котле теплом лучей. Но более глубокое изучение этого метода и проведенные расчеты показали, что несмотря на огромность количества энергии, получаемой от солнечных лучей, лишь малая часть ее может быть использована этим способом. Кроме того, энергия, которая поступает с солнечными лучами, периодическая, и здесь я обнаружил те же ограничения, что и при использовании ветряка. После длительного исследования этого способа получения движущей энергии от солнца, и учитывая необходимость большого объема котла, низкую эффективность теплового двигателя, дополнительные затраты на накопление энергии и прочие недостатки, я пришел к заключению, что "солнечный двигатель", за исключением нескольких отдельных случаев, не может иметь успешное промышленное применение.
Другой способ получать двигательную энергию из среды без затрат материалов или сырья — это использовать для привода двигателя тепло, содержащееся в Земле, воде или воздухе. Хорошо известно, что внутренние слои земного шара очень горячие, по мере приближения к центру Земли температура растет примерно на 1 °C с каждой сотней футов глубины. Трудности бурения шахт и размещения бойлеров на глубинах, скажем, двенадцати тысяч футов, что соответствует росту температуры примерно на 120 °C, не являются непреодолимыми, и мы определенно могли бы таким способом достичь использования внутреннего тепла земного шара. На самом деле, чтобы получать энергию из сохраненного земного тепла, не нужно вообще погружаться ни на какую глубину. Самые верхние слои земли и прилегающие к ней воздушные слои имеют температуру, достаточную для испарения некоторых особо летучих жидкостей, и их можно было бы использовать в бойлерах вместо воды. Несомненно, что корабль в океане может приводиться в движение двигателем, работающим от такой летучей жидкости, без использования какой-либо другой энергии кроме тепла, извлекаемого из воды. Но количество энергии, которую можно получать таким путем, если не предпринять дальнейших мер, оказывается слишком маленьким.