Диалоги (октябрь 2003 г.)
Диалоги (октябрь 2003 г.) читать книгу онлайн
В настоящем сборнике представлены стенограммы ночных передач-диалогов телевизионной программы Александра Гордона:
1. Этология любви.
2. Парадигма современной генетики.
3. Нейтрино.
4. Миграции индоевропейцев.
5. Квантовый мир и сознание.
6. Пульсирующие ледники.
7. Феномен марганца.
8. Культурный ландшафт.
9. Нейрональная пластичность.
10. Эктоны.
11. Три кризиса Розанова.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Л.К. Может быть, да…
А.Г. Что может хорошо объяснить и социальную историю человечества?
Л.К. Безусловно, те преобразования, которые происходили в генетическом аппарате, как-то отражались и на развитии человечества. Вот Гумилев старался как-то привлечь генетические факторы к объяснению тех поворотов истории, которые имели место. Он выделил даже такую группу – пассионариев. Он так примерно и предполагал, что произошел какой-то взрыв мутаций, который повышал количество этих пассионариев в популяции. Потому что исторические переломные моменты сопровождались появлением большого количества такого рода лиц, которые стремились что-то изменить, что-то сделать в разных областях.
А.Г. Но мутации эти все-таки – спонтанные, случайные?
Л.К. Вероятно, мутации, которые называют спонтанными, в большинстве случаев объясняются как раз с помощью перемещения упомянутых подвижных генетических элементов.
Был такой генетик – Раиса Львовна Берг, дочь знаменитого географа и биолога, Льва Семеновича Берга, автора одной из эволюционных концепций. Она открыла периоды моды на мутацию. В какие-то годы вдруг происходят взрывы мутации в популяции дрозофил (она с дрозофилами работала). Причем, эта мода ограничивалась какими-то определенными признаками, например, щетинки меняются как-то в этот период, мутируют – вместо прямых становятся витиеватыми, как будто обожженными. В другой период брюшко размягчается или глаза меняются – это моды на мутации. Были специфические периоды, которые характеризовались взрывом, взлетом таких мутационных событий. Очень трудно тогда это было объяснить, но сейчас склоняются к тому, что эти взрывы связаны с тем, что вдруг начинают проявлять, неизвестно почему, высочайшую активность эти подвижные генетические элементы. Начинают прыгать, перемещаться. Причем, у них есть какая-то специфичность перемещения, какие-то специфические точки посадки – поскольку мутации специфичны. И это приводит к взрыву мутации в популяции.
А.Г. И может привести к взрыву видообразования?
Л.К. Да, и может привести к взрыву видообразования. Такого рода концепцию как раз выдвинули некоторые палеонтологи в Америке – Гоулд, Элдридж, Стэнли. Когда они исследовали ископаемые останки, то оказалось, что есть периоды, когда ничего не происходит, миллионы лет проходят – и ничего, никаких изменений, а потом слой в 100-200 тысяч лет – и вдруг все начинает меняться.
Валентайн, один из американских палеонтологов, предполагал, что такие взрывообразные события в эволюции связаны с какими-то генетическими причинами, к числу таковых он тоже относил подвижные генетические элементы. Но у него никаких фактических данных не было, потому что он работал на очень древнем материале – кембрий, докембрий. Но известно, что имеются такие периоды, скажем, венд – докембрийский период, одним из первооткрывателей которого явился наш палеонтолог Федонкин, когда вдруг появляются практически все типы бесскелетных. А потом в кембрий опять внезапно появляется скелет у тех, кто были бесскелетными.
То есть подобные взрывы в истории развития животного мира имели место, и по всей вероятности они были связаны с подвижными генетическими элементами. Одно время был большой бум их исследований, сейчас немножко успокоились в этом отношении. Сейчас интересы, пожалуй, в значительной мере переключились в сферу нейрогенетики, большой интерес вызывает эта область генетики, поскольку там произошли действительно удивительные открытия. Башкирские генетики, причем солидные генетики, связанные с московскими, открыли шесть генов, ответственных за стремление к самоубийству. То есть оказывается, такой признак, как тенденция покончить жизнь самоубийством, тоже в какой-то степени зависит от определенного сочетания каких-то генов, потому что есть целых шесть генов, от которых это зависит.
При различных патологиях мозга локализовано множество генов, и действия их изучены, это тоже одна из сфер современной генетики, которая пользуется большой популярностью и активно развивается во многих странах. В частности, открыт ген старческого слабоумия, болезни Альцгеймера, наш ученый, мой бывший студент, Женя Рогаев открыл этот ген. Открыт и ген болезни Хентингтона.
А.Г. Все это, все гены присущи только гомо сапиенсу?
Л.К. Самое интересное, что, скажем, ген старческого слабоумия и ген болезни Хентингтона открыты у дрозофилы, правда, пока неизвестно, что они там делают…
А.Г. А ген самоубийства тоже у дрозофилы открыт?
Л.К. Он у нее наверняка есть, только непонятно, что он там делает, потому что есть гомология между генами. Достижение современной науки, связанное с работами на молекулярном уровне, с молекуляризацией, так сказать, науки, это открытие удивительного консерватизма мира генов. Наверняка то, что есть у человека, есть и у дрозофилы. Так что у дрозофилы тоже такие гены есть, но что они там делают, не знаю. Мы сейчас пытаемся посмотреть, что с ними происходит, какие изменения они могут вызвать. Их сейчас можно с помощью генной инженерии заставить очень активно работать, а можно, наоборот, выключить. Мы пытаемся на дрозофиле такого рода эксперименты ставить.
Я уже говорил, что человечий ген-господин можно ввести дрозофиле. Оказывается, если от дрозофилы элементы генома ввести в клетки человека, они там тоже работают. Более того, это можно даже для каких-то клинических целей использоваться, потому что у дрозофилы есть участок генома, который отвечает на повышенную температуру – то, что для дрозофилы повышенная, у человека она, скажем так, нормальная. И если какой-то ген человека плохо, допустим, работает, можно его поставить под контроль этого элемента ДНК дрозофилы, который реагирует на температуру. Для него эта температура человеческого тепла будет высокой, для человека нормальной, и ген будет стимулировать нужный человеческий ген, тот будет выдавать какой-то продукт, скажем, инсулин, если больному диабетом ввести эти клетки.
А.Г. То есть такой спусковой механизм…
Л.К. Этот дрозофелиный регуляторный участок среагирует на температуру и заставит работать ген, который кодирует инсулин, инсулин будет вырабатываться, и не нужно будет больного лечить инсулином. Естественно, тут придется уже брать его клетки, и поскольку в них нарушен синтез инсулина, их трансформировать таким геном, который способен синтезировать инсулин, а потом ввести обратно, и иммунологической несовместимости никакой не будет.
То есть весьма разнообразное применение находят эти генетические данные, в особенности, пожалуй, в области медицинской генетики, в области нейрогенетики, которая опять-таки повышает социальное звучание генетики и вызывает дополнительные дискуссии. Поскольку это сложный вопрос, коль скоро речь заходит о человеке. Тут встает проблема воспитания, нужно понять все-таки, какую роль играют гены в воспитании. На однояйцовых близнецах показана огромная роль генетического материала. Если, допустим, один однояйцовый близнец футболистом стал, то и другой обязательно станет. И более того, если один вратарем, то и тот вратарем будет. Часто однояйцовые близнецы и болеют одинаково. Причем, такую работу проводили в разных условиях воспитания. И оказалось, что те качества, которые у однояйцовых близнецов проявляются сходно, не зависят от того, в какой семье воспитывались эти близнецы. Различия в системе воспитания, в системе питания и прочего никак не сказываются на тех качествах, которые близнецы проявляют в смысле высшей нервной деятельности. Они абсолютно идентичны. Это, конечно, свидетельствует о том, что генетический аппарат играет очень большую роль.
И в силу тех особенностей генов, которые мы обозначали как норму реакции, различного рода проявления генной активности подлежат определенной коррекции – если точно знать, как ген работает, что он делает, какой продукт вырабатывает. Это достижение молекулярной генетики, мы можем конкретно всё знать: какие гены, какие продукты. Если это знать, то можно нормализовать или улучшить в нужном направлении функции гена. Это как раз пути развития современной генетики.