Ароматерапия. Справочник
Ароматерапия. Справочник читать книгу онлайн
Не претендуя на полноту изложения материала, автор стремился предоставить в распоряжение читателей, возможно, новые для него сведения по истории ароматерапии, ее роли в жизни человека, в медицине, косметике, экологии, эстетике. Мы попытались представить историю на протяжении тысячелетий в различных странах мира, ее взлеты и падения.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Некоторые исследователи нетоксической терапии онкологических заболеваний на экспериментальных моделях отдают предпочтение препаратам растительного происхождения, относящимся к группе адаптогенов (женьшень, родиола розовая, элеутерококк, лимонник китайский). Они способствуют повышению адаптации организма к неблагоприятным условиям, в частности в послеоперационном периоде онкологических больных, для стимуляции клеточного иммунитета при иммунодепрессии.
Противоопухолевый антибиотик из растений — препарат «К»— при введении в организм повышает синтез IgM, обладающий противоопухолевым действием, повышает чувствительность замедленного действия. На основе производных азулена (компонента ЭМ) создан противоопухолевый препарат.
Известно, что канцерогенез может быть предотвращен введением различных химических соединений как природного, так и синтетического происхождения. В настоящее время обнаружено, что вещества, обладающие антиканцерогенными свойствами, принадлежат к 25 различным классам химических соединений. Антиканцерогенные соединения принято классифицировать в соответствии с тем этапом канцерогенеза, на котором они эффективны. К первому типу ингибиторов относятся вещества, предотвращающие образование собственно канцерогенов из их предшественников, ко второму — так называемые блокирующие агенты, которые препятствуют доступу канцерогенов к критическим мишеням или взаимодействию с ними, к третьему — подавляющие агенты, препятствующие развитию опухолевого процесса в клетках, уже подвергшихся взаимодействию с канцерогеном.
Наши исследования относятся к изучению действия антиканцерогенов второго типа, препятствующих взаимодействию канцерогенов с критическими мишенями — белками и образованию канцерогенов — белковых аддуктов ( КБА). Исследования в этом направлении представляются наиболее перспективными для решения таких актуальных вопросов онкологии, как разработка высокоэффективных методов первичной специфической химиопрофилактики повышенного профессионального онкологического риска.
Известно, что взаимодействие канцерогенов с нуклеиновыми кислотами и клеточными белками является ключевым звеном в процессах инициации канцерогенеза. Модификация клеточных белков, происходящая в результате их взаимодействия с канцерогенами, может обусловливать повреждение процессов репликации, транскрипции и клеточного деления и, таким образом, модулировать трансформацию клеток или опухолевую прогрессию. Образующиеся при взаимодействии канцерогенов с белками КБА, как было показано, являются высокоспецифическими маркерами канцерогенеза и могут быть использованы для выявления лиц с повышенным онкологическим риском среди промышленных рабочих, а также как эффективные маркеры контроля и регистрации антиканцерогенного действия изучаемых модуляторов канцерогенеза.
Исследования антиканцерогенного и иммуномодулирующего действия РАВ проводились нами на мышах линии СЗНА, получавших в течение 15 дней известный канцероген — бензидин, вызывающий у людей опухоли мочевого пузыря, а у мышей этой линии — развитие гепатом. Эта экспериментальная модель успешно использовалась ранее для изучения антиканцерогенного действия синтетических соединений — полимеров и природных биорегуляторов — витаминов.
Бензидин давали мышам с основной диетой в дозе 100 мг/кг. РАВ эфирных масел вводили ингаляционным способом. Ингаляции производили в специально оборудованной герметической камере в течение 1 ч через день (9 раз). Скорость подачи воздуха, смешанного с летучими РАВ, составляла 3 л/мин. Исследованию подвергали следующие группы животных: 1) мыши, получавшие канцероген в течение 15 дней; 2) мыши, которым вводились РАВ без канцерогена через день (9 раз); 3) мыши, получавшие в течение 15 дней бензидин и эфирные масла; 4) интактные животные (контрольная группа).
Антиканцерогенное действие РАВ оценивали путем сравнительного изучения их влияния на образование КБА в группах мышей, получавших один канцероген и канцероген в сочетании с введением масел. Иммуномодулирующее действие РАВ оценивали путем определения их влияния на образование антителообразующих В-лимфоцитов и розеткообразующих Т-лимфоцитов.
Известно, что бензидин вызывает в печени и в сыворотке крови мышей линии СЗНА через 15 дней после введения образование КБА двух типов: содержащих экзогенный канцероген — бензидин и эндогенный — метаболит триптофана — 3-оксиантраниловую кислоту (3-ОАК). Появление КБА второго типа связано с метаболическими нарушениями, индуцируемыми поступлением в организм экзогенных канцерогенов.
Для определения КБА использовали метод встречной иммунодиффузии в агаре. Тест-системой для определения КБА служили иммуносыворотки кроликов, содержащие антитела против канцерогенов как гаптенов. Для иммунизации кроликов и получения иммуносывороток использовали синтетические, содержащие канцерогены вещества — бензидин и 3-ОАК — азопротеины. Азопротеины получали путем диазотирования аминогрупп канцерогенов и последующего азосочетания полученных диазосоединений с белковым носителем — альбуминами лошадиной сыворотки крови.
КБА определяли в сыворотке крови и экстрактах печени мышей. Для получения сыворотки крови применяли пул от 3—5 мышей. Для получения тканевых антигенов использовали печень от каждой мыши. Тканевые экстракты печени получали путем гомогенизации ткани этого органа в объеме воды, равном 5-кратному весу печени. После гомогенизации экстракты оставляли на сутки в рефрижераторе при +4 ˚С, а затем центрифугировали при 8000 об/мин и концентрировали до содержания белка в пробах 3—6 г%.
Состояние иммунореактивности в группах подопытных и контрольных животных оценивали путем подсчета антителообразующих В-клеток (АОК) в селезенке мышей против эритроцитов барана (ЭБ) при помощи реакции локального гемолиза в геле, отражающих состояние В-системы иммунитета, и розеткообразующих Т-клеток (РОК), отражающих состояние Т-системы иммунитета. Определение Т-лимфоцитов проводили в селезенке, вилочковой железе и лимфатических узлах при помощи реакции иммунного розеткообразования. Статистическую обработку результатов исследований проводили при помощи t-критерия Стьюдента.
Исследовали шалфейное, гвоздичное, жасминовое, анисовое, эвгеноловое ЭМ, основную фракцию ЭМ базилика, пихтовое ЭМ масло лавра и эвкалиптовое. Результаты проведенных исследований показали следующее.
Введение мышам лишь одного канцерогена — бензидина вызывало:
образование в сыворотке крови и в ткани-мишени печени животных КБА, содержащих экзогенный канцероген — бензидин и эндогенный — 3-ОАК у всех 14 обследованных мышей;
снижение количества АОК в селезенке мышей; в контроле число АОК составляло 309,7, в то время как у мышей, получавших бензидин, — 136,8 (Р<0,001);
инволюцию вилочковой железы и снижение количества розеткообразующих Т-лимфоцитов в селезенке и лимфатических узлах. В контроле число розеткообразующих Т-лимфоцитов составляло в селезенке 26,3, в лимфатических узлах — 34,0 и в вилочковой железе — 18,0, в то время как у мышей, получавших бензидин, в селезенке — 14,1 (Р<0,001) и в лимфатических узлах — 21,0 (Р<0,01).
Введение мышам одних РАВ без канцерогена оказывало различное действие на состояние иммунореактивности в зависимости от типа вводимых ароматических веществ. РАВ шалфейного масла не оказывали иммуномодулирующего действия на состояние иммунореактивности мышей. РАВ гвоздичного ЭМ вызывали статистически достоверное по сравнению с контролем увеличение содержания как АОК, так и розеткообразующих Т-лимфоцитов в селезенке, вилочковой железе и лимфатических узлах мышей: в селезенке число РОК составляло 43,7, в лимфатических узлах — 60,0 и в вилочковой железе — 31,0.
РАВ жасминового масла приводили к стимуляции образования АОК в селезенке мышей: их число было статистически достоверно выше по сравнению с контрольными показателями, а также к увеличению содержания Т-розеткообразующих клеток в селезенке мышей (33,3) и не влияло на число РОК в вилочковой железе и лимфатических узлах. РАВ анисового и пихтового масел вызывали стимуляцию образования АОК в селезенке мышей и не влияли на число розеткообразующих Т-лимфоцитов. РАВ ЭМ лавра не влияли на образование АОК и РОК в селезенке и лимфатических узлах, но стимулировали число Т-лимфоцитов в вилочковой железе (40,2). РАВ эвкалиптового масла оказывали иммуностимулирующее действие на образование АОК [число АОК при применении масла повышалось до 367,7, в то время как в контроле составляло 249,8 (Р<0,001)] и на образование РОК в селезенке (43,3; Р<0,02) и в лимфатических узлах мышей (46,6; Р<0,01). РАВ эвгенола не оказывали стимулирующего действия ни на число РОК, ни на число АОК: значения этих показателей были даже достоверно ниже, чем в контроле (число РОК в селезенке мышей составляло 21,6, в лимфатических узлах — 21,6 и в вилочковой железе — 14,7).