Металлы, которые всегда с тобой
Металлы, которые всегда с тобой читать книгу онлайн
Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Недаром близкий друг Чижевского замечательный поэт Николай Заболоцкий сказал:
В каждом маленьком растеньице,
Словно в колбочке живой,
Влага солнечная пенится
И кипит сама собой.
Вот именно, сама собой.
То, что ещё не получается у человека.
Горы книг и статей написаны о хлорофилле и фотосинтезе, может быть, больше, чем о другом каком-либо вещёстве или процессе. А кто подсчитал, сколько экспериментов произведено, чтобы добиться эффекта природного преобразования светового луча? В модельных системах не происходит накопления световой энергии. Искусственный хлорофилл может пока работать только как катализатор...
Установлено, что магний-порфириновый комплекс, именуемый хлорофиллом, связан с белком и способен возбуждаться под действием света. Это его основная особенность. Но этого было бы совершенно недостаточно, если бы хлорофилл не мог ещё и передавать энергию своего возбуждённого состояния другим вещёствам клетки. Ловушкой световой энергии является порфириновое кольцо, а магний служит посредником и катализатором фотохимических реакций. Хлорофилл как бы выполняет две функции: способствует созданию сложных структур из простейших молекул и в то же время обогащается энергией.
Характерно, что фотосинтез — единственный процесс живой природы, который идёт с увеличением свободной энергии и, по сути, прямо или косвенно обеспечивает ею все земные организмы, кроме хемосинтезирующих.
Удивительная энергия возбуждённого хлорофилла
Чрезвычайно интересный и ещё не выясненный до конца процесс производства энергии зелёными растениями сегодня представляется следующим образом. Квант света, поглощаясь молекулой хлорофилла, сообщает энергию её электронам, которые переходят на возбуждённые уровни. Оттуда они совершают путешествие по другим молекулам, связанным с хлорофиллом в единую цепочку генерации энергии. Если бы не было такого «содружества» то электроны, поднятые на высокие энергетические уровни, просто опустились бы на прежние места, а поглощённая энергия рассеялась бы. Иными словами, молекула испустила бы квант энергии, не совершив никакой химической работы. Произошло бы примерно то же, что происходит, когда подскакивает стальной шарик. Он падаёт, не совершив почти никакой работы, разве что на преодоление трения воздуха и удар о землю. Иное дело, если бы шарик, подпрыгнув, например, замкнул бы собою электрическую цепь, тем самым заставив зажечься лампочку. Здесь тоже потерялась бы какая-то доля энергии, но зато была бы выполнена полезная работа, хотя шарик и вернулся бы в конце концов в исходное состояние.
Нечто подобное происходит и с возбуждёнными электронами молекулы хлорофилла. Израсходовав избыток энергии, сообщённой им квантом света, они возвращаются на прежние уровни. Кому же передают свою энергию возбуждённые электроны? Нашим хорошим знакомым — цитохромам, вырабатывающим основную энергетическую валюту организма — АТФ. Заметим, что фотосинтетическая эстафета передачи энергии светового кванта происходит с весьма высоким кпд, примерно 97 %, а весь процесс фотосинтеза совершает полезную работу несколько меньше 30 %.
Мы не зря привели эти цифры. Выработка АТФ клеткой поразительно совершенна. На единицу массы ; живое существо производит энергии гораздо больше, чем Солнце. Любопытно, что человек, весящий 70 кг, вырабатывает АТФ до 75 кг в день, то есть больше собственного веса! Такое же количество АТФ, выпускаемое промышленностью для технических нужд, стоит ни много ни мало 150 тыс. долларов.
Производство энергии — это, так сказать, одна из сторон деятельности хлорофилла, не выходящая за пределы организма. Более впечатляюща другая сторона, характерная начальными и конечными продуктами фотосинтеза. В результате этого процесса из углекислого газа и воды под действием света образуются органические соединения и кислород. Благодаря хлорофиллу ежегодно на Земле происходит усвоение 200 млрд. т углекислоты, что даёт 100 млрд. т органических вещёств и около 145 млрд. т свободного кислорода.
Сегодня уже общепризнано, что благодаря фотосинтезу первых зелёных организмов, появившихся примерно три миллиарда лет назад, сформировалась современная атмосфера и появились условия для образования биосферы (выше мы уже об этом говорили). Вот такие чудеса творит магний в порфириновом кольце.
И нам нужен магний
Как мы уже знаем, магний необходим не только зелёным растениям. 20 г этого металла, содержащиеся в нашем организме, тоже для чего-то нужны. Прежде всего ион двухвалентного магния является прекрасным биологическим активатором и, вероятно, поэтому он входит в состав большой группы ферментов, которые называются киназами и выполняют важную функцию переноса фосфатной группы от молекулы АТФ на различные субстраты. За это их ещё называют фосфотрансферразами. Хотя известно довольно большое количество киназ, но пока они изучены недостаточно подробно. Молекулярная их масса различна и обычно составляет от 40 до 80 тыс.
Важную роль играют ионы магния, связывая между собой субъединицы рибосом — внутриклеточных частиц, состоящих из рибонуклеиновых кислот, участвующих в синтезе белка. Особое значение, как установили медики в последнее время, имеет магний для состояния сердечнососудистой системы. Недостаток его способствует заболеванию инфарктом миокарда — очень распространённым недугом нашего беспокойного времени. Переутомление и раздражение — тоже весьма частые наши спутники — также зависят от содержания магния в организме: в крови уставших людей концентрация его падает ниже нормы. То же самое происходит тогда, когда мы нервничаем и раздражаемся. Не случайно возбудимые люди чаще страдают сердечно-сосудистыми заболеваниями.
Любопытный факт установлен статистикой: жители районов с тёплым климатом меньше подвержены спазмам сосудов, чем северяне. Это объясняется вот чем. В условиях юга больше возможностей питаться овощами к фруктами, а ведь именно они содержат необходимые соли магния. Особенно богаты ими абрикосы, персики, цветная капуста, а также помидоры и картофель.
Нашим организмом обычно усваивается не больше половины магния находящегося в пище. Поэтому в пищевом рационе должно содержаться не менее 0,5 г магния. Этот металл наряду с кальцием совершенно необходим и для построения нашего скелета.
О жизненной важности магния можно говорить долго. Об использовании его свойств для будущего человечества можно строить лишь различные предположения. Но ясно одно: он всегда будет играть большую роль в жизнедеятельности человеческого организма.
Маленькие ускорители больших реакций
Что делается
В механике,
И в химии,
И в биологии,—
Об этом знают лишь избранники,
Но, в общем, пользуются многие:
Излечиваются хворости,
Впустую сила мышц не тратится...
Л. Мартынов
Злой и добрый дух кобальт
Средневековые саксонские рудокопы своими заклятыми врагами считали зловредных гномов—кобольдов, живших глубоко под землёй. Это именно из-за их колдовских проделок подчас не удавалось из найденной серебряной руды получить драгоценный металл. Более того, часто при плавке такой руды выделялись ядовитые газы, которые отравляли металлургов. Считалось, что именно так маленькие уродцы мстят людям, осмелившимся вторгнуться в их подземные кладовые. От этих злых духов не спасали даже молитвы... (рис. 10).
Со временем рудознатцы все же научились отличать истинную серебряную руду от «нечистой». Шведский химик Георг Брандт, выделивший из такой «нечистой» руды в 1735 году неизвестный металл, похожий на сталь с синеватым отливом, назвал его кобальтом. Под этим именем сегодня и известен химический элемент № 27.
Надо сказать, что некая таинственность всегда присутствовала вокруг кобальта и его соединений, с которыми человечество познакомилось ни много ни мало 5 тыс. лет назад. И в Древнем Египте, и в Китае соли кобальта применялись для окраски стекла и глазури в красивый синий цвет. В гробнице Тутанхамона, знаменитого египетского фараона, нашли осколки синего кобальтового стекла...