Математика. Поиск истины.
Математика. Поиск истины. читать книгу онлайн
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.
Предназначена для читателей, интересующихся историей и методологией науки.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В нашем повседневном опыте укоренилось весьма искусственное различие между массой и энергией. Они измеряются в различных единицах, например в граммах и джоулях соответственно, и энергия Eэквивалентна массе, численно равной E/c 2где c 2— скорость света в выбранных единицах. Однако ныне мы яснее, чем когда-либо, понимаем, что масса и энергия — всего лишь два способа измерения одной и той же физической сущности. Если кто и возражает против их отождествления, подчеркивая, что речь идет о разных свойствах, то не следует все же забывать об одном немаловажном обстоятельстве: и масса, и энергий в соотношении E = mc 2отнюдь не свойства, которые мы воспринимаем непосредственно нашими органами чувств, а математические термины, выражающие комбинацию таких свойств, а именно обычной массы и обычной скорости.
Хотя Эйнштейн продолжал размышлять на темы механики, теории электромагнетизма и других областей физики, на его работы в более поздний период сильное влияние оказали идеи Германа Минковского (1864-1909), одного из ведущих профессоров Цюрихского политехникума в период обучения там Эйнштейна. Выступая в 1908 г. с докладом «Пространство и время», Минковский, в частности, сказал:
Воззрения на пространство и время, которые я намерен перед вами развить, возникли на экспериментально-физической основе. В этом их сила. Их тенденция радикальна. Отныне пространство само по себе и время само по себе должны обратиться в функции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность.
Правда, признавал Минковский, мы нашли спасательное убежище в понятии непрерывно текущего времени, независимом от понятия пространства. Однако при наблюдении явлений природы мы воспринимаем время и пространство не порознь, а вместе, одновременно. Более того, время всегда измерялось по пространственным ориентирам, например по расстоянию, проходимому стрелками часов, или по движению маятника в пространстве. Вместе с тем наши методы измерения пространства с необходимостью включают в себя время. Даже при простейшем методе измерения расстояний — с помощью линейки — время безостановочно течет. Следовательно, естественный взгляд на события должен приводить к рассмотрению комбинации пространства и времени; мир представляет собой четырехмерный пространственно-временной континуум.
Известно, что при измерении пространственных и временной компонентов пространственно-временного интервала между двумя событиями различные наблюдатели могут получать разные результаты, но это не удивительно, если рассматривать трехмерное пространство само по себе. Два наблюдателя в различных точках земного шара видят одно и то же трехмерное пространство, но, основываясь на собственном опыте, каждый из них выделяет вертикальное и горизонтальное направления, отличные от вертикального и горизонтального направлений другого наблюдателя. Тем не менее мы продолжаем считать пространство трехмерным, а не рассматривать его как некую искусственную комбинацию протяженности по вертикали и горизонтали. Аналогичным образом различные наблюдатели могут по-разному разлагать пространство-время на пространственную и временную составляющие. Такое разложение столь же реально и необходимо для того, кто его производит, как и различие между горизонтальным и вертикальным направлениями для спускающегося по лестнице. Различие между тем и другим привносим мы, люди, — природа же предъявляет нам пространство и время не порознь, а вместе. В действительности в повседневной жизни мы иногда смешиваем пространство и время. Мы говорим, что звезда находится от нас на расстоянии стольких-то световых лет. Это означает, что звезда находится от нас на расстоянии, которое свет проходит за указанное время. Железнодорожное расписание также представляет собой комбинацию положения в пространстве и времени.
Эйнштейн развил идею Минковского о том, что Вселенную следует рассматривать как четырехмерный пространственно-временной мир, но эти поистине поразительные новшества специальной теории относительности Эйнштейна не позволили разрешить все трудности, перечисленные нами в предыдущей главе. По-прежнему не было никакой ясности относительно того, каким образом гравитация удерживает различные тела на поверхности Земли и планеты на их орбитах или почему в данной точке земного шара отношение массы и веса всегда должно быть постоянно.
Эйнштейн предпринял также попытку распространить специальную теорию относительности на такие системы отсчета, которые движутся относительно друг друга ускоренно.Путеводная нить к более общему варианту теории относительности была найдена в 1907 г., когда Эйнштейн, размышляя над проблемами гравитации, осознал, что так называемая гравитационная масса неотличима от массы инерциальной. Что заставило ученых ввести различие между гравитационной и инерциальной массами? Согласно первому закону Ньютона, изменить состояние движения тела можно, приложив к нему силу. Если масса тела равна m, то, чтобы сообщить ему ускорение a, нужно приложить (по второму закону Ньютона) силу F = ma.Здесь m— инерциальная масса. Если мы стукнем кием по бильярдному шару на столе, приведя шар в движение, то ускоряемая масса есть масса инерциальная. Но если мы возьмем бильярдный шар в руку и выпустим его, то он упадет, поскольку масса Земли притягивает массу шара. В этом падении участвует уже гравитационная масса (вес). Совпадают ли инерциальная и гравитационная массы? Этот вопрос не беспокоил последователей Ньютона, но в связи с совершенно новыми проблемами, касающимися массы даже в специальной теории относительности, не мог не занимать Эйнштейна. И он пришел к следующему выводу: гравитационная масса эквивалентна инерциальной и гравитационная масса есть не что иное, как инерциальная масса в пространстве-времени совершенно нового типа.
Чтобы лучше понять ход рассуждений Эйнштейна, рассмотрим пример: пассажир свободно падающей (например, из-за обрыва троса) кабины лифта. В таком случае пассажир не испытывает действия силы тяжести. Действительно, он не давит на пол кабины и не имеет веса. Если, находясь внутри падающей кабины лифта, пассажир уронит носовой платок или наручные часы, то эти предметы будут падать. Но кабина также падает, поэтому и платок, и часы останутся (относительно кабины) в той точке пространства, где их выпустили. Внутрикабины лифта важна только инерциальная масса. Но для внешнего наблюдателя существует сила тяжести, действующая на кабину и находящиеся внутри нее предметы.
Обобщая, можно сказать, что все наблюдения, производимые локально над системой, на которую действует однородная статическая сила тяжести, будут такими, как если бы система двигалась равноускоренно. Ускорение и сила тяжести эквивалентны. В этом и состоит смысл сформулированного Эйнштейном принципа эквивалентности. Иначе говоря, этот принцип означает, что наблюдатель, падающий в гравитационном поле, будет испытывать то же, что и наблюдатель, находящийся в области пространства, полностью экранированной от гравитационного поля, если он движется с ускорением, равным ускорению свободного падения.
Под влиянием идей Минковского о пространстве-времени, своих собственных размышлений относительно инерциальной и гравитационной масс и побуждаемый желанием распространить специальную теорию относительности на системы отсчета, движущиеся ускоренно, Эйнштейн пришел к идее искривленного пространства-времени. Неоднородность реального гравитационного поля не позволяет заменить его единой ускоренной системой отсчета в большой области пространства. Поэтому Эйнштейн воспользовался идеями Римана и Клиффорда (хотя о последнем он, возможно, не знал), которые полагали, что распределение материи в пространстве-времени может быть учтено в геометрической структуре последнего.
«Увидеть», как выглядит эйнштейновское четырехмерное искривленное пространство-время, мы не в силах, но, воспользовавшись аналогией, все же можем в какой-то степени интуитивно представить его. Рассмотрим форму Земли. Хотя для многих целей вполне достаточно считать, что Земля имеет форму шара, в действительности это не так. На поверхности Земли есть горы, долины, ущелья. Какую форму имеют геодезические, или кратчайшие пути, на такой поверхности, заполненной материей? Ясно, что они изменяются в зависимости от формы поверхности и при переходе от одной области к другой.