Математика. Утрата определенности.
Математика. Утрата определенности. читать книгу онлайн
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Интересный довод против отрицательных чисел выдвинул близкий друг Паскаля теолог и математик Антуан Арно (1612-1697). Арно усомнился в том, что −1:1 = 1:−1. Как может выполняться такое равенство, спрашивал он, если −1 меньше, чем 1? Ведь меньшее число не может относиться к большему так же, как большее к меньшему. Лейбниц, признав правильность возражения Арно, указал, что такого рода пропорции вполне допустимо использовать в вычислениях, ибо по формеони правильны, и сравнил действия, производимые над отрицательными числами, с действиями, производимыми над мнимыми величинами, введенными незадолго до этого. Тем не менее Лейбниц затемнил существо дела, предложив называть мнимыми (несуществующими) все величины, не имеющие логарифма. По мнению Лейбница, число −1 не существует, так как положительные логарифмы соответствуют числам, большим 1, а отрицательные логарифмы (!) соответствуют числам, заключенным между 0 и 1. Следовательно, для отрицательных чисел логарифмов просто «не хватает». Действительно, если бы нашлось какое-нибудь число, соответствующее log(−1), то половина его, как следует из теории логарифмов, соответствовала бы log√−1, a √−1 заведомо не имеет логарифма.
Одним из первых алгебраистов, умышленно не переносившим отрицательный коэффициент в другую часть уравнения, был Томас Гарриот (1560-1621). Однако он отвергал отрицательные корни и даже «доказал» в своем сочинении «Практические аналитические искусства» ( Artis analyticae praxis,1631), опубликованном уже после его смерти, что отрицательные корни не существуют. Ясные и четкие определения отрицательных чисел дал Рафаэль Бомбелли (XVI в.), хотя ему и не удалось обосновать правила действий над отрицательными числами, поскольку в то время отсутствовала логическая основа, необходимая для обоснования положительных чисел. {71}Стевин рассматривал уравнения с положительными и отрицательными коэффициентами и считал отрицательные корни вполне допустимыми. В своем сочинении «Новое изобретение в алгебре» ( Invention nouvelle en algèbre,1629) Альбер Жирар (1595-1632) не проводил никакого различия между отрицательными и положительными числами и указывал оба корня квадратного уравнения, даже если они были отрицательными. И Жирар, и Гарриот употребляли один и тот же знак «минус» для обозначения как операции вычитания, так и отрицательных чисел, хотя следовало бы ввести два отдельных символа, поскольку отрицательное число — независимое понятие, в то время как вычитание — одна из четырех арифметических операций.
В целом можно сказать, что немногие математики XVI-XVII вв. свободно обращались с отрицательными числами или легко восприняли их введение, большинство заведомо не признавали отрицательные числа «настоящими» корнями алгебраических уравнений. По поводу отрицательных чисел среди математиков бытовали самые нелепые предрассудки. Так, Валлис, придерживавшийся прогрессивных для своего времени взглядов и не отвергавший отрицательных чисел, был убежден в том, что отрицательные числа больше, чем бесконечность, и в то же время меньше нуля. В своей «Арифметике бесконечно малых» ( Arithmetica infinitorum,1655) Валлис доказывал, что поскольку отношение a/0при положительном aобращается в бесконечность, то, когда знаменатель становится отрицательным (отношение a/bс отрицательным b), отношение должно стать больше, чем a/0,так как отрицательный знаменатель меньше нуля. Следовательно, заключал Валлис, отрицательные числа должны быть больше, чем бесконечность.
Некоторые из наиболее передовых мыслителей того времени — Бомбелли и Стевин — предложили представление чисел, которое, несомненно, способствовало принятию всей системы вещественных чисел. Бомбелли предположил, что существует взаимно-однозначное соответствие между вещественными числами и длинами отрезков, отложенными на прямой (с заданной единицей длины), и ввел для длин четыре основных действия. По мнению Бомбелли, вещественные числа и производимые над ними арифметические действия определяются длинами отрезков и соответствующими геометрическими операциями. Тем самым Бомбелли рационализировал систему вещественных чисел на геометрической основе. Стевин также рассматривал вещественные числа как длины и считал, что при подобной интерпретации исчезают все трудности, связанные с введением иррациональных чисел. Разумеется, при таком подходе вещественные числа оказались тесно связанными с геометрией.
Так и не преодолев трудностей, связанных с иррациональными и отрицательными числами, европейцы еще более увеличили свое, и без того тяжкое, бремя, когда набрели на новое открытие, значение которого они осознали далеко не сразу, — комплексные числа. Новые числа возникли, когда математики распространили операцию извлечения квадратного корня на любые числа, которые только могут встретиться, например при решении квадратных уравнений. Так, Кардано в гл. 37 своего трактата «Великое искусство» ( Ars magna,1545) поставил и решил следующую задачу: разделить число 10 на две части, произведение которых равно 40. Эта на первый взгляд нелепая задача допускает решение, поскольку, как заметил Д'Аламбер, «алгебра щедра: она нередко дает больше, чем от нее можно было бы требовать». Если x— одна из частей, то по условиям задачи x(10 − x) = 40и мы получаем для xквадратное уравнение.
Решив его, Кардано нашел корни 5 + √−15 и 5 − √−15, относительно которых заметил, что эти «сложнейшие величины бесполезны, хотя и весьма хитроумны». «Умолчим о нравственных муках» и умножим 5 + √−15 на 5 − √−15. Произведение этих двух чисел равно 25 − (−15) = 40. По этому поводу Кардано философски заметил: «Арифметические соображения становятся все более неуловимыми, достигая предела столь же утонченного, сколь и бесполезного».
Еще раз Кардано столкнулся с комплексными числами в связи с алгебраическим методом решения кубических уравнений, который он изложил в своей книге. Хотя Кардано искал и отбирал только вещественные корни, выведенная им формула давала и комплексные корни (если уравнение допускало комплексные корни). Небезынтересно отметить, что в том случае, когда все три корня уравнения были вещественными, формула Кардано приводила к комплексным числам, по которым можно было найти вещественные корни. {72}Таким образом, Кардано мог не придавать большого значения комплексным числам, но, поскольку он не знал, как извлекать из комплексных чисел кубический корень и, следовательно, как получать вещественные корни, ему так и не удалось преодолеть эту трудность. Вещественные корни Кардано находил другим способом.
Бомбелли также рассматривал комплексные числа как решения кубического уравнения и сформулировал (практически в современном виде) правила выполнения четырех арифметических операций над комплексными числами, однако считал их бесполезной и хитроумной «выдумкой». Альбер Жирар признавал комплексные числа, по крайней мере как формальные решения уравнений. В частности, в работе «Новое изобретение в алгебре» Жирара говорится следующее: «Можно было бы спросить, для чего нужны эти невозможные решения [комплексные корни]. Я отвечу — по трем причинам: для незыблемости общих правил; чтобы не было других решений и по причине их полезности». Однако передовые взгляды Жирара не оказали сколько-нибудь заметного влияния на его коллег.
Декарт также был среди тех, кто отвергал комплексные корни. Именно он ввел в употребление термин «мнимое число». В своей «Геометрии» Декарт утверждал: «Ни истинные, ни ложные [отрицательные] корни не бывают всегда вещественными, иногда они становятся мнимыми». Декарт считал, что отрицательные корни можно сделать «действительными», преобразуя исходное уравнение в уравнение с положительными корнями, тогда как комплексные корни превратить в вещественные невозможно. Следовательно, комплексные корни с полным основанием можно считать не настоящими, а мнимыми.