История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных читать книгу онлайн
Эта книга, по словам самого автора, — путешествие во времени от вавилонских „шестидесятников“ до фракталов и размытой логики . Таких от… и до… в Истории математики много. От загадочных счетных палочек первобытных людей до первого калькулятора — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до математического сюрреализма двадцатого века…
Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Кубизм был основан Пабло Пикассо и Жоржем Браком. Картина Пикассо «Авиньонские девицы» (1907) была первой кубистской картиной. Наиболее плодотворный период кубизма закончился в 1922 году, поскольку его последователи к тому времени отошли от ранее единого стиля. Хотя кубизм считался последовательным течением в искусстве, в основной философии и практике всегда существовали некоторые различия. Пикассо, кажется, находился в некоторой степени под влиянием математических идей, заявляя, что на него сильно повлияли смещающиеся перспективы Сезанна и строение африканского искусства и скульптуры. Брака также очень интересовали геометрические представления, ведь именно он придумал термин «кубизм». Конечно, можно проследить и непрекращающийся интерес к более традиционным геометрическим представлениям перспективы и структуры пространства. В 1912 году в Париже происходила выставка, оказавшая значительное влияние на развитие искусства. Она называлась «Золотое сечение» — ссылка на классическую пропорцию, которую часто можно увидеть в архитектуре и в искусстве. В то же самое время художники вроде Гриса и Жака Виллона приблизились к чисто абстрактной и геометрической форме кубизма, лишенного любых предметно-изобразительных свойств.
Оценить влияние на искусство начала двадцатого столетия неевклидовой геометрии намного труднее, чем воздействия идеи четвертого измерения. Проблема может корениться в сложности отображения неевклидовых пространств. Итальянский математик Эудженио Бельтрами (1835–1900) отобразил геометрию Лобачевского в виде физической модели псевдосферы. Простого знания о существовании неевклидовой геометрии было достаточно, чтобы дать волю артистическому воображению. Возможно, ее формальный математический характер привел к тому, что она оказалась менее плодотворной, чем артистическая свобода, предложенная четвертым измерением. Живописцы вроде Дюшана были очень влиятельными, но они оставались в меньшинстве со своим предложением, чтобы художники изучали математику и другие точные науки. Однако анализ неевклидовой геометрии оказал влияние на основателя дадаизма — Тристана Тцара — и сюрреалистов.
В 1936 году живописец Шарль Сирато издал «Манифест дименсионизма». Цитируя теории Эйнштейна как один из источников своего вдохновения, он объявляет, что, «одухотворенные новой концепцией мира», искусства проникли в новое измерение. Живопись должна была оставить плоскость и выйти в объемное пространство, таким образом придя к пространственным конструкциям и инсталляциям. Он настаивал, что «скульптура должна покинуть замкнутое, неподвижное и мертвое пространство, то есть трехмерное пространство Евклида, чтобы завоевать артистически выразительное, четырехмерное пространство [Германа] Минковского». Манифест был подписан внушительным числом ведущих художников. Декларация учитывала и основные интерпретации четвертого измерения, то есть как пространственное и духовное измерение, так и время.
Однако, вообще говоря, немногие живописцы после 1930-х годов демонстрировали открытый интерес как к четвертому пространственному измерению, так и к неевклидовым пространствам, за исключением сюрреалистов. Андре Бретон нашел новые геометрии идеально подходящими в качестве аргументов в пользу новой «сюрреальности». Хотя сюрреалистичная теория Бретона в значительной степени базировалась на анализе подсознания Фрейда, на их создание также оказали влияние измерения высшего порядка, четырехмерное пространство-время, объединенное с более высокими измерениями иррационального и подсознательного. Мы можем заметить этот интерес в названиях некоторых из их работ, вроде «Молодой человек, удивленный полетом неевклидовой мухи» Макса Эрнста (1942), а также в их содержании. Примеры таких произведений — «пластичные» часы Сальвадора Дали, а также «Постоянство памяти» (1931) и гиперкуб — четырехмерный аналог куба — в его «Распятии» (Corpus Hypercubicus) 1954 года. Наиболее научный подход к искусству продемонстрировал сюрреалист Оскар Домингес, который, работая в скульптуре, был очарован жизнью объектов во времени. Его идеи относительно литохронических поверхностей кажутся очень близки к скульптурным работам Боччони. Оскар Домингес создал ряд пространственных «космических» картин, многогранные формы которых сравнивались с геометрическими моделями, построенными в Институте Анри Пуанкаре и показанными на фотографиях Мэна Рея на выставке сюрреалистов 1936 года. Но, чтобы неевклидовы геометрии явились миру во всей своей эстетической прелести и математической точности, надо было дождаться появления компьютеров.
Новые многомерные и неевклидовы геометрии, которые зародились как абстрактные математические теории, не только стали использоваться в новой физике, но и послужили источником вдохновения для художественных и философских движений, которые стремились свергнуть привычный образ мышления. В мире искусства эти геометрии принимали самые разные формы, от духовных до совершенно анархических, а порой и оба вида одновременно. Отказ от евклидовой геометрии как пространственной парадигмы означал, что было создано пространство для нового взгляда на жизнь, Вселенную и все сущее.
Новые художники подвергались яростному нападению за их озабоченность геометрией. Однако геометрические фигуры — сущность рисунка. Геометрия — наука о пространстве, его измерениях и соотношениях — всегда определяла нормы и правила живописи.
До сих пор трех измерений геометрии Евклида было вполне достаточно для выражения беспокойства, которое чувствуют великие художники, тоскующие по безграничности.
Новые живописцы не собираются, как и их предшественники, быть геометрами. Но можно сказать, что геометрия для скульптуры — то же самое, что грамматика для искусства слова. Сегодня ученые не ограничиваются тремя измерениями Евклида. Живописцы совершенно естественно, можно сказать интуитивно, увлеклись новыми возможностями измерения пространства, которые на языке современных студий обозначаются термином «четвертое измерение».
С точки зрения пластики четвертое измерение выходит из трех известных измерений. Оно отображает необъятность пространства во всех направлениях в любой взятый момент. Это само пространство, это измерение бесконечности. Четвертое измерение придает всему пластичность. Оно придает всему правильные пропорции, в то время как в греческом искусстве, например, из-за несколько механического ритма пропорции постоянно нарушаются.
В греческом искусстве было чисто человеческое понимание красоты, в нем нужен человек как мера совершенства. Но в искусстве новых живописцев за новый идеал принимается бесконечная Вселенная, и именно по этому идеалу мы сверяем новые формы прекрасного, именно он позволяет живописцу располагать предметы в соответствии с желаемой им степенью пластичности…
И наконец, я должен отметить, что четвертое измерение… призвано поддержать устремления и предчувствия многих молодых художников, которые изучают скульптуры Египта, Африки и народов Океании, медитируют на различных научных работах и живут в ожидании великого искусства.
23. Машинные коды
В истории математики существовало множество параллельных течений, из которых то одно, то другое периодически выходило на передний план. Такими были отношения между арифметикой и геометрией, или между чистой и прикладной математикой. Другой парой противоположностей можно назвать алгоритмическую и «аналитическую» математику. Последнюю более интересовали лежащие в основе структуры и «красивые» теоремы, тогда как первая в основном занималась выработкой процедур, необходимых для принятия практических решений. Мы видели, например, как в различных системах счисления использовались различные методы или алгоритмы, позволяющие найти иррациональные числа вроде √2. Исследование того, какая процедура наиболее эффективна в терминах достижения необходимого уровня точности при наименьшем числе шагов, — основная забота алгоритмической математики.