УРОЖАИ И ПОСЕВЫ
УРОЖАИ И ПОСЕВЫ читать книгу онлайн
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.
Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Самодовольство и обновление
вплотную к сути того или иного вопроса, - так, что уже можешь, перегнувшись через край, заглянуть в самую глубину, - невозможно толком разобрать, что здесь придумал ты, а что тебе подсказал кто-то другой; да и незачем.
Поначалу это соображение привело меня в некоторое замешательство. Мои старшие товарищи - Картан, Дьедонне, Шварц и другие - не могли бы сказать мне ничего подобного. В правила профессиональной этики, которые я в свое время изучал на их примерах, это никак не вписывалось. И все же, я чувствовал, что в его словах - а главное, в беззаботной веселости его голоса - содержалась некая истина, до сих пор от меня ускользавшая; это сбивало с толку . В том, как я относился к математике (и прежде всего к математическим результатам) всегда было очень много честолюбия. Майк же - совсем другой человек. Глядя на него, нельзя было понять: то ли он «всерьез» занимается математикой, то ли просто забавляется, как веселый мальчишка. Он как будто увлечен игрой по уши; но чтобы из-за нее не есть, не пить да ночей не спать - это уж извините.
22. Прежде чем глубже погрузиться в раздумья, оставив позади (обманчивую подчас) видимую поверхность, мне хотелось бы высказать одну мысль. Точнее, она сама спешит сорваться у меня с языка. Звучит она примерно так: математическая среда, в которой я обретался в пятидесятые и шестидесятые годы - итого, два десятилетия кряду - действительно была миром без ссор и конфликтов. Это само по себе достаточно необычно; здесь стоит задержаться и поразмыслить.
Стоило бы уточнить, что говоря о математической среде тех лет, я имею в виду довольно узкий круг математиков, то есть центральную часть моего «микрокосма». Это «ядро» составляли всего-то человек двадцать моих коллег: ближайшие друзья, с которыми мы часто встречались и подолгу спорили о математике. Я как-то не осознавал раньше, что большинство из них были членами Бурбаки (сейчас, когда я перебрал в памяти их имена, это открытие меня поразило). Спору нет, Бурбаки были сердцем и душой моего микрокосма. Почти все мои друзья-математики так или иначе имели отношение к группе. В шести-
десятые годы я сам уже вышел из ее состава, но с точки зрения общих интересов в математике моя связь с членами группы (такими, как Дьедонне, Серр, Тэйт, Ленг и Картье) была прочней, чем когда-либо. К тому же, я оставался завсегдатаем Семинара Бурбаки - а вернее, тогда-то я им и стал: большая часть моих бурбакистских докладов (по теории схем) относится именно к шестидесятым.
И, без сомнения, как раз в шестидесятые годы общий настрой в группе Бурбаки стал меняться: появился дух элитарности, избранности, и на месте прежней открытости мало-помалу выросла стена, отделявшая нас от мира. В то время я совсем не задумывался об этом. Это и понятно, ведь каждый из нас, в том числе и я, по-своему способствовал переменам; заметить их - значило признать свою ответственность. Все еще помню свое удивление, когда, в 1970 г., я обнаружил, до какой степени самое имя Бурбаки стало непопулярным в широких слоях математического мира (а до тех пор мне, кажется, и в голову не приходило, что этот мир отнюдь не сводится к Бурбакам и их ближайшему окружению). Для многих людей оно ассоциировалось со снобизмом, узкой догматичностью, культом «канонической» формы (в ущерб живому восприятию математической реальности), заумностью, выхолощенной искусственностью изложения и массой других неприятных вещей! И не то, чтобы Бурбаки пользовались дурной славой только среди обитателей пресловутого «болота»: в шестидесятые годы (а возможно, и раньше) мне доводилось слышать отзывы в том же духе от достаточно известных математиков «со стороны». На математику они смотрели иначе, чем мы, и «стиль Бурбаки» казался им просто невыносимым (15). Итак, математический мир разбился на два лагеря. Безоговорочно принимая сторону Бурбаков, я все же испытывал изумление и горечь: ведь я-то верил, что математика, как ничто другое, приводит умы в согласие! Однако же, я мог бы припомнить, что поначалу чтение работ Бурбаки мне самому давалось непросто, даже если я вскорости научился с этим справляться. Язык этих работ был и впрямь педантичным и скучноватым: сами по себе они не могли бы разбудить во мне живой интерес к математике. Канонический (то есть написанный в соответствии со строгими правилами группы) текст, мягко говоря, не давал ни малейшего представления о том, в какой обстановке он был составлен. В этом, как я сейчас думаю, кроется основной просчет самого замысла группы: по статьям, по книгам, вышедшим из-под пера Бурбаки, не было
Самодовольство и обновление
видно, что писали их живые люди. И что этих людей явно связывало друг с другом нечто иное, чем, скажем, священная клятва всю жизнь не отступать ни на шаг от неумолимых канонов научной строгости…
Но, заговорив о необратимом скольжении группы в сторону элитаризма и о стиле изложения, принятом у Бурбаки, мы отступили от темы. Здесь меня в основном интересует (и поражает) то обстоятельство, что «бурбакистский микрокосм», ставший по моему выбору моей профессиональной средой, оказался настоящим бесконфликтным миром. Говоря об этом, нельзя забывать, что группа собрала вокруг себя людей, обладавших, если можно так выразиться, ярко выраженной математической индивидуальностью. Многие считались «выдающимися математиками» и, несомненно, пользовались достаточным авторитетом, чтобы окружить себя кругом последователей - своим собственным маленьким «микрокосмом». Там уже слово «господина учителя» было бы законом: его никто не посмел бы оспаривать(16)! Между тем, в группе мы все были «на равных»: о борьбе за власть в теплой и даже сердечной бурбакистской обстановке никто и не помышлял. В научной жизни, мне кажется, такое бывает нечасто (чтобы не сказать раз в столетие). И, не боясь повториться, я хотел бы лишний раз подчеркнуть, что замысел группы осуществился, и наша совместная работа обернулась редкой удачей.
Итак, похоже на то, что мне в свое время исключительно повезло: с первых же шагов по математической почве я набрел на то самое, почти сказочное поселение, не промахнувшись ни во времени, ни в пространстве. Оно выросло там за несколько лет до моего прихода и обрело совсем особые, быть может, неповторимые черты. Я вошел в эту необыкновенную среду, и она стала для меня олицетворением идеального «математического сообщества». Между тем, в смысле сколько-нибудь глобальном его, вероятно, вне этой чудесной среды просто не существовало. Да и вообще, за всю историю математики такая мечта воплощалась у нас лишь локально, в самых ограниченных кругах (возможно, группа, сформировавшаяся в свое время вокруг Пифагора, была одним из таких примеров - но то были люди совсем иного склада ума).
Я тогда очень остро ощущал свою принадлежность к этой среде - это было чувство, неотделимое от моего нового самоощущения, восприятия себя как математика. Это был первый, после семейного, круг друзей, где меня тепло приветствовали у входа и, не раздумывая, приняли,
как своего. Здесь, правда, действовала другая связь, особой природы: мой собственный подход к математике оказался сродни подходу, принятому в группе, и тем самым нашел себе подтверждение в новой среде. Не то, чтобы мой подход в точности совпадал с «бурбакистским» - но они были явно близки между собой, и здесь нельзя было ошибиться.
И вот, в придачу к своим неоценимым достоинствам чисто математического толка, новая среда была в моих глазах идеальным, сказочным краем без войн и без ссор - до полного совершенства ей недоставало лишь самой малости! Я ведь всегда искал такого бесконфликтного мира, и эти поиски привели меня в математику - в науку, где, как мне казалось, нет места и самому робкому намеку на дисгармонию. Достичь заветной цели - большая удача, но у нее есть и оборотная сторона. Конечно, в новой среде я сумел развить в себе кое-какие способности, состояться как математик в окружении старших коллег, ставших мне равными. Но в этом я нашел для себя (желанный!) способ укрыться от конфликта в моей собственной жизни. За такие подарки всегда приходится расплачиваться с судьбой. Заплатил и я - духовным застоем, растянувшимся на долгие годы.