У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

На нашем литературном портале можно бесплатно читать книгу У интуиции есть своя логика. Гёдель. Теоремы о неполноте., Коллектив авторов-- . Жанр: Математика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
Название: У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
Дата добавления: 15 январь 2020
Количество просмотров: 451
Читать онлайн

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. читать книгу онлайн

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - читать бесплатно онлайн , автор Коллектив авторов

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:
ГИББСОВСКАЯ ЛЕКЦИЯ

Хотя после 1950 года Гёдель публиковался очень мало, это не значит, что он перестал размышлять и писать. Ученый оставил внушительное число неизданных рукописей, посвященных в основном философии и теологии, с исследованиями, среди прочего, на тему существования Бога, переселения душ и анализа философских работ Готфрида Лейбница. Все эти рукописи — поскольку Гёдель не оставил инструкций о том, что делать с ними, — были унаследованы его супругой Аделью, которая, в свою очередь, перед смертью в 1981 году передала их библиотеке Института перспективных исследований, где они и хранятся.

Среди неизданных бумаг выделяется текст Гиббсовской лекции, которую Гёделя пригласили прочитать на ежегодной встрече Американского математического общества, состоявшейся в Провиденсе 26 декабря 1951 года. По свидетельствам, Гёдель ограничился тем, что быстро прочел подготовленную заранее рукопись и даже не предоставил права на вопросы и комментарии в конце, хотя его встречали громкими аплодисментами, вызванными редкой возможностью лично увидеть гения такого уровня.

В последующие годы Гёдель занимался тем, что исправлял и завершал рукопись с намерением опубликовать ее, однако ему так и не удалось придать ей форму, которая удовлетворяла бы его самого. В конце концов лекция была опубликована в 1994 году как часть сборника под названием "Курт Гёдель, неизданные очерки".

Чем так интересна Гиббсовская лекция? В ней Гёдель очень детально (больше, чем в любой другой своей работе) изложил собственное понимание философских следствий из своих теорем о неполноте. В этой лекции он утверждал: теоремы доказывают, что математический платонизм — правильная позиция философии математики.

Вопрос состоит в следующем: математика создается или открывается? Это человеческое творение, или ученые открывают факты, существующие во внешней реальности независимо от них?

Платонизм утверждает, что математические объекты имеют объективное существование, и работа ученых состоит в том, чтобы открывать характеристики этих объектов. Платон был уверен, что наши ощущения — только деформированное отражение высшей действительности, существующей в "мире идей". В этом самом мире живут и объекты, исследуемые математиками.

Знаменитая теорема Гёделя о неполноте показывает, что нет никаких формальных [синтаксических] методов доказательства, с помощью которых можно доказать все математические истины.

Уиллард ван Орман Куайн о теореме Гёделя

Противоположная позиция, которая обычно называется формализмом и в которой собраны некоторые идеи интуиционизма и программы Гильберта, утверждает, что математика — это творение человека, подобное музыке. С этой точки зрения математика — лингвистическая (синтаксическая) игра, в которой есть некоторые отправные точки (аксиомы) и логические правила, позволяющие осуществлять операции на их основе. Работа ученого состоит в том, чтобы открыть, куда нас заведут правила игры (что, по сути, не сильно отличается от работы шахматиста, который ищет оптимальный ход в определенной позиции). Если, согласно платонизму, математические объекты существуют сами по себе, а ученые открывают их свойства, то формализм утверждает обратное: математические объекты и их свойства существуют лишь благодаря ученым. У обеих позиций есть сильные и слабые стороны, и они существуют в математической мысли параллельно друг другу. Современный философ математики Джон Барроу пишет: "Математики — формалисты с понедельника по пятницу и платонисты по выходным".

То есть для повседневной работы, для доказательства теорем и написания статей формалистская позиция является более подходящей, поскольку в конечном счете любая истина основывается на аксиомах, выбор которых не нуждается в дальнейших подтверждениях (в формализме требуется только, чтобы аксиомы были непротиворечивыми, но они не обязаны отражать внешнюю истинность). Однако по выходным, когда математики расслабляются, они чувствуют, что работают с "истинными объектами", существование которых независимо и реально (что бы это ни означало).

Обе позиции четко разделены в отношении вопроса континуум-гипотезы. В предыдущей главе мы увидели, что континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств. Так истинна она или ложна? Для чистого формалиста (хотя сегодня таких почти не существует) ответ не имеет смысла. Аксиомы — это правила игры, выбранные произвольно, не отражающие никакую внешнюю "истинность"; существуют только синтаксические понятия "доказуемого" и "недоказуемого", а не понятия "истинности" или "ложности". Согласно этой точке зрения так же законно добавить в теорию множеств новую аксиому, при которой СН будет доказуема, как и добавить другую аксиому, при которой она будет опровергнута. Две различные теории множеств могут существовать параллельно друг другу так же, как одновременно существуют различные виды шахмат (например, китайские и японские), которые допускают варианты правил игры, и нет необходимости думать, что существуют "истинные" шахматы.

Для платонизма, наоборот, аксиомы теории множеств отражают истину, которая существует объективно и в которой СН либо истинна, либо ложна, и не хватает всего лишь аксиомы, которая позволила бы решить вопрос.

Гёдель был убежденным платонистом и в статье, опубликованной в 1947 году под названием "Что представляет собой проблема континуума Кантора?", писал: "Следует отметить [...], что с точки зрения, принятой здесь, доказательство неразрешимости гипотезы Кантора на основе аксиом, принятых в теории множеств, [...] в какой-то степени решило бы проблему. Итак, если принять, что значение первичных символов теории множеств [...] корректно, то понятия и теоремы теории множеств описывали бы некую точно определенную действительность, в которой гипотеза Кантора должна была бы быть истинной или ложной". Позже, в 1963 году, дополнив доказательство о неразрешимости СН, Пол Коэн согласился с этой точкой зрения и рискнул предположить, что гипотеза Кантора на самом деле ложна.

ЕСТЬ ЛИ ИСТИННЫЕ ШАХМАТЫ?

Китайские шахматы — стратегическая игра из той же серии, что и западные шахматы и сёги (японские шахматы). Считается, что все они происходят от игры под названием чатуранга, зародившейся в Индии в VI веке. Для формалистов (которые подчеркивают синтаксические аспекты математики) выбор аксиом для математической теории не сильно отличается от определения правил настольной игры. Западные, китайские или японские шахматы — родственные настольные игры, но среди них нет "истинной" и "ложных". Подобно этому, поскольку континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств, можно добавить СН или ее отрицание в качестве новой аксиомы. В обоих случаях получаются разные теории множеств (разные правила игры), и нельзя сказать, что одна из них истинная, а другая ложная. Для платонистов, наоборот, теория множеств относится к объективной действительности, в которой континуум-гипотеза на самом деле истинна или ложна.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_67.jpg

Доска китайских шахмат с исходной позицией фигур.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_68.jpg

РИС. 1

Как мы уже сказали, на Гиббсовской лекции 1951 года Гёдель утверждал, что его теоремы о неполноте доказывают справедливость платонистической точки зрения.

Рассмотрим кратко аргументацию Гёделя. В разуме каждого из нас есть интуитивное представление о том, что такое натуральные числа. Мы понимаем, как определяются основные операции и каковы их основные свойства. Например, мы воспринимаем, что умножение 8 на 5 равносильно физической операции образования восьми столбиков с пятью объектами в каждом из них (рисунок 1).

Перейти на страницу:
Комментариев (0)
название