Если бы числа могли говорить. Гаусс. Теория чисел
Если бы числа могли говорить. Гаусс. Теория чисел читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Неудивительно, что Гаусс посвятил свои последние годы улучшению этого результата в поисках более точной и лучше обоснованной с точки зрения математики формулы. Так возникла проблема вычисления вероятностей. Было очевидно, что по мере увеличения N вероятность найти простое число уменьшается. Идея состояла в том, чтобы воспользоваться вероятностями, основанными на выражении
1/ln(N)
Результат Гаусса получил новое выражение:
На самом деле эта формула была небольшой модификацией предыдущей; ученый обозначил ее Li(N) и назвал интегральным логарифмом N; выражение было более точным, поскольку в нем ряд сумм заменялся интегралом, то есть бесконечной суммой. Итак, выражение, заданное Гауссом, имело вид:
Гаусс предположил: π(Ν) = Li(N), что известно как гипотеза Гаусса о простых числах, которая, как мы увидим, превратилась в теорему Гаусса о простых числах. Так немецкий математик снова превзошел Лежандра, хотя для того чтобы доказать его открытие, потребовался огромный технический прогресс в вычислении простых чисел. Чтобы проверить свою гипотезу, Гаусс много времени посвятил построению таблиц простых чисел. В возрасте более 70 лет он написал астроному Иоганну Энке (1791-1865): «Очень часто я пользовался четвертью часа отсутствия дел, чтобы находить простые числа с промежутками размером в тысячу». Что и говорить, весьма оригинальный способ отдыхать! Но благодаря ему Гауссу удалось определить количество простых чисел, меньших 3000000, и он выяснил, что разница по сравнению с результатом его интегральной функции едва равна 0,0007 %. Когда появились более обширные таблицы простых чисел, обнаружилось, что формула Лежандра была гораздо менее точной и давала заметную погрешность для чисел больше 10000000.
С помощью современных методов вычислений было выяснено, что результат Гаусса для простых чисел меньше 1016 отличается от верного значения едва на одну десятимиллионную от 1 %, в то время как результат Лежандра дает отклонение в несколько тысяч миллионов раз больше. Мы можем утверждать, что Гаусс, основываясь на рассуждениях математического характера, превзошел Лежандра, который просто подобрал формулу для доступных ему данных.
Кроме этой первой гипотезы о том, что функция π(Ν) может быть точно оценена функцией Li(N) для бесконечных значений N, Гаусс вывел и вторую гипотезу, поскольку считал, что функция Li(N) в конце концов будет переоценивать реальное количество простых чисел (всегда на бесконечно малый процент) и что эта тенденция будет сохраняться. Это второе утверждение получило название второй гипотезы Гаусса. Доказать ее или опровергнуть было непростой задачей, поскольку в то время еще не было современных компьютеров, которые могли совершить необходимые вычисления. Подтвердить или опровергнуть гипотезы Гаусса можно с помощью строгого математического доказательства: нельзя ограничиться экспериментальным подтверждением, поскольку какой бы длинной ни была составленная таблица простых чисел, всегда будут сомнения в том, сохранится ли эта тенденция по мере продвижения ко все большим числам. Для математики возможности экспериментальной проверки на невообразимо больших числах недостаточно, и в этом ее отличие от других наук.
В проверке гипотез Гаусса заметную роль играл Бернхард Риман, которого можно назвать его лучшим учеником.
В 1809 году Вильгельм фон Гумбольдт (1767-1835) стал министром образования Пруссии и совершил революцию в образовательной системе. Изучение математики впервые получило большое значение в новых гимназиях и университетах, студентов воодушевляли изучать математику как таковую, а не только в качестве вспомогательной дисциплины на службе у других наук. Но эта тенденция весьма отличалась от французского подхода, в котором превалировало утилитарное знание. Одним из тех, кому удалось воспользоваться этим изменением, был Риман, на тот момент один из самых способных студентов-математиков в Германии. После окончания учебы в Люнебурге (государство Ганновер), следуя желанию своего отца-священнослужителя, он в 1846 году поступил в Гёттингенский университет, который славился преподаванием теологии. Так судьба свела Римана с уже пожилым Гауссом. Через некоторое время молодой студент убедил своего отца разрешить ему заменить изучение теологии на математику. Риман в течение двух лет учился в Берлинском университете, поскольку в Гёттингене, по его мнению, было мало интеллектуальных стимулов, помимо Гаусса. В Берлине он завязал общение с Дирихле, который предложил студенту первые задачи с простыми числами. Во время пребывания в Берлине Бернхарду удалось изучить записи Гаусса с гипотезами о простых числах.
Риман вернулся в Гёттинген в 1849 году, чтобы закончить докторскую диссертацию и отдать работу на оценку своему учителю, Гауссу. Он сделал это в 1854 году, за год до смерти наставника.
Когда Риман начал заниматься простыми числами, нужно было доказать еще две гипотезы Гаусса. Во-первых, что функция π(Ν) может быть точно выражена Li(N) для любого N, то есть что разница между ними является бесконечно малой, таким образом, ее предел стремится к нулю. И во-вторых, что Li(N) > π(Ν) для любого значения Ν. Чтобы взяться за проблему, Риман ввел знаменитую дзета-функцию, которая определяется следующим образом:
где z — комплексное число, отличное от 1. У этой функции есть значения, в которых она равна нулю, такие как z = -2, z = -4 и другие, известные под названием тривиальных нулей. Нетривиальные нули — это те, для которых действительная часть строго больше нуля, но строго меньше 1. Вспомним, что комплексное число всегда имеет вид а + bi где а и b — действительные числа. Итак, для нетривиальных нулей справедливо 0 < а < 1.
Риман своим определением всего лишь обобщил функцию, изученную Эйлером, который обозначил ее так же:
Разница между дзета-функцией Римана и функцией Эйлера состоит в области определения. Для Эйлера х имеет действительное значение, в то время как у Римана z — комплексное число. Следовательно, функция Эйлера принимает действительные значения, в то время как функция Римана принимает комплексные значения.
Интерес математиков к этой бесконечной сумме, известной как ряд, происходит из мира музыки, и этот ряд появился раньше исследований Эйлера, хотя именно он изучил его наиболее глубоко и нашел связь с простыми числами. Пифагор заметил, что звук, издаваемый сосудом с водой, зависит от количества содержащейся в нем жидкости. Оказалось, что звуки гармоничны, если количество воды является частью от целого, дробью с числителем 1, то есть 1, 1/2, 1/3, 1/4, ... Пифагор назвал этот ряд гармоническим. Сумма гармонического ряда равноценна тому, что в дзета-функции Эйлера х взяли равным 1. Можно доказать, что сумма этого ряда бесконечна. На первый взгляд это очевидный результат, поскольку если мы сложим бесконечное количество положительных чисел, сумма будет расти и в конце концов примет бесконечное значение. Но дело в том, что это не так: для х = 2 ряд расходится. Действительно, Эйлер доказал, что значение
В истории математики не всегда было ясно, будет ли сумма бесконечного числа положительных членов обязательно равна бесконечности, и даже появились философские теории, посвященные этому.
Первый большой результат, связывающий дзета-функцию с простыми числами, был получен Эйлером в 1737 году. Он утверждает, что
где х — действительное число, а Р — множество простых чисел. В формуле сумма заменяется произведением дробей, образованных простыми числами. Чтобы дойти до этого результата,