-->

Том 9. Загадка Ферма. Трехвековой вызов математике

На нашем литературном портале можно бесплатно читать книгу Том 9. Загадка Ферма. Трехвековой вызов математике, Виолант-и-Хольц Альберт-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Том 9. Загадка Ферма. Трехвековой вызов математике
Название: Том 9. Загадка Ферма. Трехвековой вызов математике
Дата добавления: 16 январь 2020
Количество просмотров: 354
Читать онлайн

Том 9. Загадка Ферма. Трехвековой вызов математике читать книгу онлайн

Том 9. Загадка Ферма. Трехвековой вызов математике - читать бесплатно онлайн , автор Виолант-и-Хольц Альберт
На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 16 17 18 19 20 21 22 23 24 ... 34 ВПЕРЕД
Перейти на страницу:

(4х + З)2 + х = (5х — 3)2 —>

16х2 + 24х + 9 + х = 25х2 — 30х + 9.

Сократив девятки в обеих частях равенства, получим:

16х2 + 24х + х = 25х2 — 30х.

Поделив обе части на х, имеем:

16х + 24 + 1 = 25х 30 —>

24 + 1 + 30 = 25х — 16х —>

55 = 9х —>

х = 55/9.

Мы получили еще одно решение: 55/9, 119/9, 247/9. Теперь нам открываются новые задачи. Например, существуют ли целые решения, которые удовлетворяют этим условиям?

Задача 29 из книги IV

Еще одна, также очень известная задача из «Арифметики» — это задача 29 из книги IV. Она звучит так:

«Найти четыре квадрата, сумма которых, увеличенная на сумму их сторон, будет равна данному числу».

И снова мы видим всю гениальность Диофанта:

«Пусть дано число 12. х + х + 1/4 — квадрат. Следовательно, сумма четырех квадратов + сумма их сторон + 1 = сумма других четырех квадратов = 13. Следовательно, нужно разделить 13 на четыре квадрата, и, если мы вычтем 1/2 из всех его сторон, получим стороны искомых квадратов.

Имеем 13 = 4 + 9 = (64/23 + 36/25) + (144/25 + 81/25), и стороны искомых квадратов равны 11/10, 7/10, 19/10, 13/10. Их квадраты соответственно равны 121/100, 49/100, 361/100, 169/100».

Рассуждения полностью корректны для частного случая n = 12. Эту задачу в современной форме записи можно представить так:

«Найти x1, х2, х3, х4 такие, что

х12 + х22х32х42 + х1 + х2 + х3 х4 = n,

где n — данное число».

Прибавив 1 к обеим частям равенства, получим

х12 + х22х32х42 + х1 + х2 + х3 х4 + 1/4 + 1/4 + 1/4 + 1/4 = n + 1.

Переупорядочив слагаемые и предположив, что n = 12, имеем

х12х1 + 1/4 + х22 + х2 + 1/4 + х32 + х3  + 1/4 + x42 + х4 + 1/4 = 12 + 1.

Принимая во внимание, что х2х + 1/4 = (х + 1/2)2, можно записать следующее:

(x1 + 1/2)2 + (х2+ 1/2)2 + (х3 + 1/2)2 + (х4 + 1/2) = 13.

Осталось лишь представить 13 в виде суммы четырех квадратов. В данном конкретном случае нетрудно заметить, что 13 является суммой двух квадратов, 4 и 9. Используя теорему Пифагора, нетрудно выразить каждое из этих чисел в виде суммы двух квадратов, как делает сам Диофант в других задачах «Арифметики».

Числа 4, 3, 5 образуют пифагорову тройку: 42 + 32 = 52. Поделив обе части равенства на 52, получим (4/5)2 + (3/5)2 = 1. Теперь, если мы умножим обе части равенства на 22, получим (8/5)2 + (6/5)2 = 22, то есть (64/25) + (36/25) — 4. Если умножить обе части равенства на З2, получим (12/5)2 + (9/5)2 = З2, то есть (144/25) + (81/25) = 9 — именно такое разложение и предлагает Диофант. Таким образом, решение найдено:

(х1 + 1/2) = 8/5,

(x2 + 1/2) = 6/5,

(x3 + 1/2) = 12/5,

(x4 + 1/2) = 9/5.

Вычтем 1/2 из обеих частей каждого равенства и получим ответ, предлагаемый Диофантом. Удивительно, но 13 = 1 + 4 + 4 + 4, то есть представить 13 в виде суммы четырех квадратов можно было намного проще! Подобное разложение дает следующее решение: 1/2, 3/2, 3/2, 3/2.

Загадочное примечание

Баше заметил, что в этой и других задачах «Арифметики» Диофант пользовался тем, что любое число можно представить в виде суммы четырех квадратов. Он проверил эту закономерность для всех чисел до 325, но ему хотелось найти строгое доказательство. Здесь в дело вступил гений Ферма: «Я первым открыл замечательную теорему, которая гласит: всякое натуральное число — либо треугольное, либо сумма двух или трех треугольных чисел; всякое натуральное число — либо квадратное, либо сумма двух, трех или четырех квадратных чисел; всякое натуральное число — либо пятиугольное, либо сумма от двух до пяти пятиугольных чисел и так далее до бесконечности для шестиугольников, семиугольников и любых других многоугольников, изменяя формулировку этой удивительной теоремы в соответствии с числом углов».

Он писал: «Доказательство этой теоремы зависит от различных и запутанных свойств чисел, и я не могу привести его здесь. Я решил посвятить этому вопросу отдельный и полный труд и тем самым удивительным образом продвинуть арифметику далеко за пределы, известные еще с древних времен».

Но эта работа так никогда и не увидела свет. Написал ли ее Ферма? Действительно ли ему удалось найти какое-то доказательство? Неизвестно. Это еще одна загадка Ферма. Известно лишь, что этой задачей занимались математики масштаба Лежандра, Лагранжа, Эйлера и Гаусса, и каждому из них удалось внести свой вклад в ее решение.

В 1770 году Жозеф Луи Лагранж доказал случай для квадратов, то есть утверждение, что любое натуральное число можно представить в виде суммы четырех квадратов. Доказательство этой теоремы для треугольных чисел принадлежит Гауссу, который 10 июля 1796 года записал в дневнике: «**EYRHKA num = Δ + Δ + Δ».

Этот частный случай оказался эквивалентен следующему утверждению: любое число вида 8m + 3 можно представить в виде суммы трех нечетных квадратов. Дирихле, в свою очередь, изучал, сколькими способами можно представить данное число в виде суммы трех треугольных чисел. Наконец, в 1813 году Коши привел полное доказательство. Для полного решения задачи, вкратце записанной на полях книги, понадобилось почти 150 лет.

Том 9. Загадка Ферма. Трехвековой вызов математике - _57.jpg

Портрет математика Огюстена Луи Коши, который завершил доказательство теоремы, сформулированной Ферма на основе задачи 29 книги IV «Арифметики» Диофанта.

Возвращаемся ко второй книге: задача 8

Задача 8 книги II, несомненно, является важнейшей вехой в истории, которая рассказывается в этой книге. Эта задача звучит так:

«Представить квадратное число в виде суммы двух квадратов».

Затем Диофант приводит следующее решение:

«Пусть дано квадратное число 16. Пусть х2 — один из искомых квадратов. Следовательно, 16 — х2 также будет квадратом. Возьмем квадрат вида (mx — 4)2, где m — любое целое, 4 — квадратный корень из 16. Возьмем в качестве примера (2х — 4)2 и приравняем это выражение к 16 — х2. Следовательно, 4х2 — 16х + 16 = 16 — х2; 5х2 = 16х; х = 16/5. Искомыми квадратами являются 256/25 и 144/25».

Здесь использован тот же прием, что и в задаче 32 книги II. Так как значение m может быть произвольным, то задача может иметь бесконечно много решений.

Все эти решения очень легко найти. На полях страницы, где излагается эта задача, Ферма написал комментарий, который вошел в историю:

1 ... 16 17 18 19 20 21 22 23 24 ... 34 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название