Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.
* * *
Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками А и В на сферической поверхности из всех окружностей, проходящих через эти точки и расположенных на этой сфере, геодезической линией является большой круг. Другими словами, геодезическая линия получается путем пересечения сферы плоскостью АОВ. Таким образом, геодезическим отрезком между точками А и В является меньшая из дуг большого круга, проходящего через А и В. Обратите внимание, что случай с этим кругом — единственный, когда А и В не являются диаметрально противоположными точками.
В геометрии на сфере прямыми линиями являются дуги больших кругов. Таким образом, параллельные линии не существуют, так как большие круги всегда пересекаются в диаметрально противоположных точках. Для наглядности достаточно взглянуть на дольки очищенного апельсина.
* * *
ПОВЕРХНОСТЬ ЗЕМЛИ
Является ли единственным кратчайший путь между двумя европейскими столицами, например, между Лондоном и Парижем? Ответ на этот вопрос положителен: существует только одна геодезическая линия, соединяющая эти города. Аналогично, уникален ли маршрут между Северным и Южным полюсами? Здесь ответ отрицательный: существует бесконечное количество геодезических линий, соединяющих эти две точки, так как они диаметрально противоположны.
* * *
Мир сферических треугольников иллюстрирует много математических свойств эллиптической геометрии. Поэтому стоит его рассмотреть подробнее. Для начала рассмотрим на сфере радиуса R сферический треугольник с вершинами А, В, С и сторонами а, Ь, с.
Одним из результатов, о котором мы уже говорили, является тот факт, что сумма углов сферического треугольника больше 180°, или π радиан, и меньше 360° = 2π радиан. То есть
π < A + В + С < 2π.
Таким образом, можно сказать, что сумма сторон сферического треугольника удовлетворяет неравенству:
a + b + c < 2·π·R.
Величина (А + В + С — 180°) называется сферическим избытком, так что площадь сферического треугольника S находится по следующей формуле:
где R — радиус сферы.
Следует отметить, что чем больше площадь треугольника, тем больше сумма его углов. Кроме того, чем больше площадь треугольника, тем больше сферический избыток, и именно поэтому больше значение А + В + С.
В евклидовой геометрии имеется следующий результат: длина окружности радиуса r равна 2πr. В эллиптической геометрии этот результат выглядит следующим образом: длина окружности радиуса r всегда больше, чем 2πr.
* * *
ПЛОЩАДЬ СФЕРИЧЕСКОГО ТРЕУГОЛЬНИКА НА ПОВЕРХНОСТИ ЗЕМЛИ
Давайте решим следующую задачу: какова должна быть площадь сферического треугольника на поверхности Земли, чтобы сумма его углов была больше 180° хотя бы на 1°? По формуле для площади сферического треугольника имеем:
Мы хотим найти значение S, такое что
Отсюда получаем
Выражая S и подставляя 6350 км вместо R, имеем
Следовательно, у любого треугольника на поверхности Земли, площадь которого равна или больше 703739,6319 км2, сумма углов будет превышать 180° по крайней мере на 1°.
* * *
В сферической геометрии теоремы синусов и косинусов выглядят следующим об разом:
Теорема косинусов также работает после так называемой круговой перестановки (замены а на Ь, b на с и с на а).
И снова теорема Пифагора из евклидовой геометрии имеет свой аналог в другом геометрическом пространстве. Но в сферической геометрии теорема Пифагора ведет себя несколько иначе. В этой геометрии она формулируется следующим образом: пусть R — радиус сферы, с — гипотенуза, а и b — две другие стороны сферического треугольника, а угол С — прямой угол, тогда:
Для большей ясности это утверждение может быть выражено в словесной форме. И хотя оно совсем не напоминает оригинальную теорему Пифагора, мы сформулируем его в любом случае:
«В любом прямоугольном треугольнике на поверхности сферы радиуса R косинус отношения гипотенузы с к радиусу R равен произведению косинусов отношений других сторон к радиусу».
В следующей таблице сравниваются основные математические характеристики традиционной и сферической геометрий — самой простой версии эллиптической геометрии.
ЕВКЛИДОВА ГЕОМЕТРИЯ
• Прямая линия является кратчайшей линией между двумя точками.
• Прямые линии бесконечны. Расстояние между двумя точками не ограничено.
• Существует только одна прямая линия, соединяющая две точки.
• Существуют прямые без общих точек, и они называются параллельными линиями.
• Две перпендикулярные прямые образуют четыре прямых угла.
• Треугольник имеет не более одного прямого угла.
СФЕРИЧЕСКАЯ ГЕОМЕТРИЯ
• Геодезическая линия является кратчайшей линией между двумя точками.
• Геодезические линии имеют максимальную конечную длину, равную πR. Максимальное расстояние между двумя точками равно πR.
• Геодезическая линия будет единственной тогда и только тогда, когда две точки не являются диаметрально противоположными. В противном случае существует бесконечное число геодезических линий.
• Прямыми линиями являются большие круги, и они всегда пересекаются. Не существует параллельных линий в евклидовом смысле.