Математика. Поиск истины.

На нашем литературном портале можно бесплатно читать книгу Математика. Поиск истины., Клайн Морис-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Математика. Поиск истины.
Название: Математика. Поиск истины.
Дата добавления: 15 январь 2020
Количество просмотров: 297
Читать онлайн

Математика. Поиск истины. читать книгу онлайн

Математика. Поиск истины. - читать бесплатно онлайн , автор Клайн Морис

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.

Предназначена для читателей, интересующихся историей и методологией науки.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 7 8 9 10 11 12 13 14 15 ... 85 ВПЕРЕД
Перейти на страницу:

Из сравнения этих двух последовательностей видно, что вторая работа сулит молодому человеку больший доход за второе полугодие каждого года и такой же доход, как первая работа, за первое полугодие каждого года. Нехитрые подсчеты позволяют разобраться, почему так происходит. Прибавка в 50 долл. за каждые полгода означает, что заработная плата возрастает на 50 долл. за шесть месяцев, или на 100 долл. за год. Иначе говоря, получив за год две прибавки по 50 долл., молодой человек с начала следующего года будет получать столько же, сколько он получил бы, имея годовую прибавку в 200 долларов. С этой точки зрения к началу каждого следующего года оба предложения оказываются одинаково выгодными. Но на второй работе молодой человек начинает получать прибавку уже через полгода, тогда как на первой ему пришлось бы ждать прибавки целый год. Именно поэтому на второй работе он получает за второе полугодие больше, чем на первой.

Рассмотрим еще одну простую задачу. Торговец продает яблоки по 5 центов за пару и апельсины по 5 центов за три штуки. Боясь просчитаться, торговец решает смешать фрукты и продавать их по 10 центов за пять штук. Такой шаг на первый взгляд представляется разумным. От продажи двух яблок и трех апельсинов, т.е. пяти штук фруктов, он выручил бы раньше 10 центов. Смешав яблоки с апельсинами, торговец, как ему казалось, получил возможность продавать любые фрукты без разбора по 2 цента за штуку, тем самым существенно упростив расчеты с покупателями.

Но в действительности торговец обманул самого себя. В этом нетрудно убедиться на примере. Предположим, что торговец вынес на продажу дюжину яблок и дюжину апельсинов. Обычно он, продавая яблоки по 5 центов за пару, выручил бы за дюжину яблок 30 центов. Продавая апельсины по 5 центов за три штуки, торговец выручил бы за дюжину апельсинов 20 центов. Следовательно, его общая выручка составила бы 50 центов. Продавая же две дюжины фруктов по 10 центов за пяток, он выручил бы по 2 цента за штуку, или всего 48 центов. Средняя цена одного фрукта равна не 2 центам, a 2 1/ 12цента.

Торговец понес убыток из-за того, что допустил ошибку в своих рассуждениях. Он предполагал, что средняя цена яблок и апельсинов должна быть по 2 цента за штуку, тогда как средняя цена яблока составляет 2 1/ 2цента, а средняя цена апельсина — 1 2/ 3цента. Средняя цена одного фрукта равна 2 1/ 12цента, а не 2 центам.

Приведем еще одну распространенную ошибку интуиции. Предположим, у нас имеется сад круглой формы радиусом 10 м. Мы хотим обнести его стеной, которая отстояла бы всюду на 1 м от границы сада. Насколько периметр стены длиннее периметра самого сада? Ответить на этот вопрос нетрудно. Периметр сада вычисляется по формуле геометрии: длина окружности равна 2πr,где  r— радиус, а π— число, которое приближенно равно 22/ 7. Следовательно, периметр сада составляет 2π×10м. По условию стена должна на 1 м отстоять от границы сада, поэтому радиус стены равен 11 м, а ее длина — 2π×11 м., Разность длин двух окружностей равна 22π − 20π = 2π,т.е. стена должна быть на м длиннее периметра сада. Пока ничего удивительного нет.

Рассмотрим теперь аналогичную задачу. Предположим, что нам необходимо проложить дорогу, которая опоясывала бы земной шар (для современного инженера это не слишком трудная задача), и что дорога повсюду должна проходить на высоте 1 м над поверхностью Земли. На сколько метров такая дорога была бы длиннее окружности Земли? Прежде чем приниматься за вычисление этой величины, попытаемся оценить ее из интуитивных соображений. Средний радиус Земли составляет около 6370 км. Так как это примерно в 6 млн. раз больше радиуса сада из предыдущей задачи, можно было бы ожидать, что и приращениедлины дороги (по сравнению с длиной окружности Земли) примерно во столько же раз больше приращения длины стены (по сравнению с периметром сада). Напомним, что последнее было равно 2π,м. Таким, образом, интуитивные соображения приводят к величине 6 000 000×2πм. Даже если эта оценка вызывает у вас какие-то возражения, вы, вероятно, согласитесь с тем, что длина дороги должна быть гораздо больше окружности земного шара.

Простой расчет позволяет поднять, как обстоит дело в действительности. Чтобы избежать вычислений с большими числами, обозначим радиус Земли в метрах через r. Тогда длина окружности Земли равна 2πr,а длина дороги — 2π(r + 1)м. Но последнюю величину можно записать в виде 2πr + 2π. Следовательно, дорога длиннее окружности Земли ровно на м, т.е. ровно на столько, на сколько стена длиннее периметра сада, хотя дорога опоясывает огромную Землю, а стена — небольшой сад. Формулы позволяют утверждать нечто большее: независимо от значения  rразность 2π(r + 1) − 2πrвсегда равна . Это означает, что внешняя окружность, проходящая на расстоянии 1 м от внутренней, всегда (независимо от радиуса) на м длиннее внутренней окружности.

Интуиция подводит нас и во многих других ситуациях. Человек, находящийся на некотором расстоянии от яблони, видит, что одно яблоко вот-вот упадет, и хочет попасть в него из ружья. Он знает, что к тому времени, когда пуля долетит до места, где яблоко находилось в момент выстрела, оно успеет пройти в свободном падении некоторое расстояние. Должен ли человек целиться в точку, расположенную ниже яблока, чтобы попасть в цель? Нет. Он должен прицелиться и выстрелить в яблоко: за то время, что пуля летит до яблока, они опустятся вниз по вертикали на одно и то же расстояние.

В качестве последнего примера, показывающего, как интуитивные соображения с большой вероятностью приводят к неверному ответу, рассмотрим задачу о теннисном турнире. Для участия в турнире записалось 136 спортсменов. Организаторы хотели бы составить расписание встреч с таким расчетом, чтобы определить победителя за минимальное число встреч. Сколько встреч для этого потребуется? Интуиция бессильна здесь чем-нибудь помочь. Между тем ответ прост: для выявления победителя требуется провести 135 встреч, так как каждый выбывший из турнира спортсмен должен потерпеть по крайней мере одно поражение, а всякий, кто проиграл встречу, выбывает из турнира.

Почему мы испытываем иллюзии, основываясь на своих ощущениях, и совершаем ошибки, доверяясь интуиции? Иллюзии, порождаемые различными органами чувств, вероятно, всего лучше объяснило бы исследование физиологии последних, но для наших целей достаточно понять, что и в иллюзиях, и в ошибочных интуитивных предсказаниях повинны не только органы чувств, но и мозг человека. Что касается интуиции, то она формируется как результат взаимосвязи опыта, чувственных восприятий и грубых догадок; в лучшем случае интуицию можно было бы назвать дистиллированным опытом. Последующий анализ или эксперименты подтверждают или опровергают интуитивные предсказания. Иногда интуицию определяют как силу привычки, коренящейся в психологической инерции.

Говоря о чем-то как о заведомо воспринимаемом, мы тем самым предполагаем возможность отделения восприятия от того, кто воспринимает. Но такое отделение невозможно, ибо не может быть восприятия без воспринимающего субъекта. Что же такое объективная реальность? Быть может, несколько наивно мы считаем объективным то, по поводу чего сходятся во мнении все воспринимающие субъекты. Так, Солнце и Луна существуют. Солнце желтое, Луна голубая.

В своем «Руководстве по физиологической оптике» (1896) Гельмгольц писал:

Нетрудно видеть, что все свойства, которые мы им [объектам реального мира] приписываем, означают не более чем воздействия, производимые ими либо на наши органы чувств, либо на другие внешние объекты. Цвет, звук, вкус, запах, температура, гладкость, твердость относятся к первому классу; они соответствуют воздействиям на наши органы чувств. Химические свойства аналогичным образом связаны с реакциями, т.е. воздействиями, производимыми рассматриваемым физическим телом на другие. Так же обстоит дело и с другими физическими свойствами тел: оптическими, электрическими, магнитными… Отсюда следует, что в действительности свойства объектов в природе вопреки их названиям не означают ничего присущего самим объектам как таковым, а всегда указывают на их отношение к некоторому второму телу (в том числе к нашим органам чувств).

1 ... 7 8 9 10 11 12 13 14 15 ... 85 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название