-->

История математики. От счетных палочек до бессчетных вселенных

На нашем литературном портале можно бесплатно читать книгу История математики. От счетных палочек до бессчетных вселенных, Манкевич Ричард-- . Жанр: Математика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История математики. От счетных палочек до бессчетных вселенных
Название: История математики. От счетных палочек до бессчетных вселенных
Дата добавления: 16 январь 2020
Количество просмотров: 220
Читать онлайн

История математики. От счетных палочек до бессчетных вселенных читать книгу онлайн

История математики. От счетных палочек до бессчетных вселенных - читать бесплатно онлайн , автор Манкевич Ричард

Эта книга, по словам самого автора, — путешествие во времени от вавилонских „шестидесятников“ до фракталов и размытой логики . Таких от… и до… в Истории математики много. От загадочных счетных палочек первобытных людей до первого калькулятора — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до математического сюрреализма двадцатого века…

Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 47 ВПЕРЕД
Перейти на страницу:

В «Шу шу цзю чжан» описываются методы решения задач индивидуального сравнения и ряда одновременных сравнений, как в случае задачи на остаток. Сравнения, возможно, лучше известны в форме модульной арифметики (арифметические операции над абсолютными значениями чисел). Решения соответствуют тому, что теперь известно как китайская теорема остатка. Цинь Цзюшао утверждает, что он научился этому методу у составителей календарей, работавших в Императорском Астрономическом бюро в Ханьчжоу, но там использовали правило, не понимая его. Это правило было выведено для того, чтобы решить проблему сопоставления различных циклов вроде лунного месяца, солнечного года и искусственного шестидесятеричного цикла. Фактически даже Гаусс, который вновь открыл метод пять столетий спустя, использовал для примера задачи с календарными циклами. Неясно, где Цинь Цзюшао на самом деле узнал это правило. Подлинное новаторство первоклассного математика заключается в выходе за пределы традиции комментариев. Он применил давнюю китайскую вычислительную традицию для решения реальных проблем.

6. Математические сутры

Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого — началом третьего тысячелетия до нашей эры. Хотя самые ранние документы довольно трудно расшифровать, понятно, что это торговые счета, с весами и размерами, с особой ссылкой на передовую технологию производства кирпичей. Приблизительно в 1500-х годах до нашей эры культура Хараппы была уничтожена захватчиками с севера. Их называли ариями. Они были пастухами, говорили на индоевропейском языке, предшественнике санскрита и многих современных языков. Первая письменная кодификация языка была сделана великим филологом Панини в четвертом веке до нашей эры. Он в одиночку сумел сделать санскрит понятным языком, кодировавшим мысли целого субконтинента в течение более чем двух тысяч лет. Если можно сказать, что греческая математика проистекает из философии, то корни индийской математики уходят в лингвистику.

Самая ранняя ведическая литература прежде всего носит религиозный и церемониальный характер. Наиболее ценны с точки зрения математики — приложения к главным «Ведам», известные как «Веданги». Они записаны в виде сутр — коротких поэтических афоризмов, столь типичных для санскритских текстов, которые стремятся передать содержание в наиболее сжатой и запоминающейся форме. «Веданги» разделены на шесть областей: фонетика, грамматика, этимология, поэзия, астрономия и ритуалы. Последние два предмета дают нам возможность оценить уровень развития математики того времени. Раздел «Веданг», посвященный астрономии, называют «Джьотиша-сутра», в то время как раздел, посвященный ритуалам, носит название «Кальпа-сутра». Одна из его частей, посвященная строительству жертвенных алтарей, называется «Шульба-сутра».

Самый ранний текст «Шульба-сутры» был написан приблизительно в 800–600 годах до нашей эры, еще до кодификации санскрита Панини. Геометрия выросла из потребности соответствовать размеру, форме и ориентации алтарей, определенных в священных текстах «Вед». Абсолютная точность была столь же важна для эффективности ритуала, как и правильное произнесение мантр. Геометрия выражена тремя основными способами: явно сформулированные геометрические теоремы; процедуры, необходимые для того, чтобы строить различные формы алтарей; алгоритмы, связанные с предыдущими двумя группами. Самая важная теорема — теорема Пифагора прямоугольных треугольников.

Один пример иллюстрирует, как теоретические результаты шли бок о бок с практическими задачами. Используя теорему Пифагора, всегда можно построить квадрат, площадь которого равна удвоенной площади заданного квадрата. Но если мы начинаем с двух реальных квадратов, скажем сделанных из ткани, каков самый эффективный способ разрезать их и снова сложить куски так, чтобы составить больший квадрат? Хотя этот тип построения не приводится в «Шульба-сутре» в явном виде, существует свидетельство подобных конкретных способов рассуждения. Один из ключей — приближение, используемое для вычисления √2, которое осуществляется с точностью до пятого десятичного знака: «Увеличьте измерение на треть от него, а эту треть — на четверть от этой трети минус тридцать четвертую часть от этой четверти». Это могло отображать разделение одного из квадратов на подходящие прямоугольники и расположение их вокруг другого квадрата, чтобы построить квадрат двойной площади. Этот подход имеет аналоги в китайской геометрии, а результат очень близок к тому, который получали вавилоняне.

Учитывая выдающееся положение индо-арабских цифр в десятеричной системе со знакоместом, стоит кратко вспомнить раннюю историю индийских цифр. Цифры «кхарошти» можно увидеть на надписях, относящихся к четвертому столетию до нашей эры. В них есть особые символы для единицы и четверки, а также для десяти и двадцати. Числа свыше сотни получаются путем сложения. Самые ранние следы цифр «брахми» относятся к третьему столетию до нашей эры, их можно увидеть на колоннах Ашоки, разбросанных по всей Индии. Это более развитая система, в нее входили специальные символы для чисел, кратных десяти и ста, а также для значений второго десятка. Датировка чисел «бакшали» (по названию города, где они были обнаружены) крайне ненадежна, но если она все же верна, то эти числа, относящиеся к третьему веку нашей эры, — первая известная система с учетом знакоместа, где было специальное обозначение для ноля. Там было всего десять символов, но ими можно было выразить любое число, сколь угодно большое. Цифры «гвалиор» (тоже по названию города) девятого века нашей эры узнаваемо похожи на наши современные, это первое бесспорное появление ноля в индийской надписи, За пределами Индии, но тем не менее в рамках ее культурного влияния мы находим кхмерскую надпись в Камбодже, датированную 683 годом, в которой используется ноль.

Классический период индийской математики начался в середине первого тысячелетия. Большей частью Индии правила династия Гуптов, которые поощряли исследования в области наук и искусств. Математическая деятельность была сконцентрирована в трех центрах: в столице Паталипутре (современная Патна), в Удджайне на севере и в Майсуре на юге. Два самых крупных математика этого периода — это Ариабхата (476–550), автор «Ариабхатии» (499), и Брахмагупта (ок. 598–660), который в 628 году сочинил трактат под названием «Брахма-спхута-сидцханта» («Открытие Вселенной»). Основными задачами, которыми занимались эти ученые, были математическая астрономия и анализ уравнений.

«Ариабхатия» состоит из 123 стихов. Трактат начинается с восхваления богам, а затем в нем описываются алгоритмы для вычисления квадратов, кубов, квадратных и кубических корней. В работе приведены 33 правила по арифметике, алгебре и тригонометрии на плоскости. Семнадцать правил посвящены геометрии, 11 — арифметике и алгебре. В десятом правиле приводится значение π как отношение 62,832:20,000, что эквивалентно 3,1416, — это самое точное значение, вычисленное в то время, и оно останется таковым еще тысячу лет. Трактат включает также таблицу синусов. В отличие от Птолемея, использовавшего в качестве основной меры хорды, индусы использовали полухорды и выражали их в радиусах. Поэтому, за исключением постоянного множителя, индийские синусы намного ближе к нашим современным. Разделив четверть окружности на 24 равные части и начав с нескольких базовых результатов и формул, вроде sin 30° = 1/2, Арьябхата составил таблицу синусов для углов от 3°45′ и выше. Ему также приписывают создание формулы, позволяющей приблизительно оценить синус любого угла без использования таблицы с точностью до нескольких десятичных знаков.

Позже Брахмагупта создал формулу интерполяции, используя арифметический метод разностей, чтобы найти синусы промежуточных углов. В дальнейшем тригонометрию развивали арабы на севере и математики Кералы на юге. Арабы, а затем и западный мир познакомились с индийской математикой и астрономией отчасти благодаря переводу «Брахма-спхута-сиддханты».

1 ... 6 7 8 9 10 11 12 13 14 ... 47 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название