Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее читать книгу онлайн
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Ведь периодический закон — это не только закон Менделеева, но и закон природы. Следовательно, периодическая система должна быть цельной системой без «посторонних включений» или «исключений, подтверждающих правило». Не следует вообще говорить об актиноидах или уранидах. Нам кажется, правильнее говорить об актиноидном состоянии трансуранового элемента, когда он проявляет валентность 3+, или об уранидном состоянии, если валентность 6+, и так далее…
А.Д. Гельман: Именно размышления о периодической системе навели на мысль о том, что могут существовать соединения, в которых степень окисления нептуния и плутония равна семи. В атоме нептуния на трех удаленных от ядра подоболочках как раз семь электронов, а у плутония — даже восемь… При каких-то условиях f-электроны могут превратиться в d-электроны, т. е. перейти, грубо говоря, из четвертого (если считать снаружи) в третий «слой», и тогда их легче оторвать…
Н.Н. Крот: Логично было предположить, что окисление шестивалентного нептуния до семивалентного произойдет под действием сильного окислителя в щелочной среде.
А.Д. Гельман: Первые опыты Николай Николаевич сделал в апреле 1967 г. Окислителем был озон.
Н.Н. Крот: Сначала я попробовал вести реакцию в карбонатных растворах некоторых соединений шестивалентного нептуния. Пропускаю озон, и — ничего не меняется. Добавил щелочь и получил зеленый раствор, очевидно, коллоидный. Оставил отстояться: может, разложится. День, два, а он все зеленый. На шестой день доложил Анне Дмитриевне. Сняли спектр — ни на что не похож. Поставил такой же опыт с ураном — никакого эффекта. Зато, озонируя в щелочной среде плутоний, получили еще одну новую окраску — иссиня-черную.
А.Д. Гельман: Сделали несколько контрольных опытов. Повторили все и раз, и два, и три. Другие сильные окислители вместо озона брали. А результат везде один: окисляются шестивалентный нептуний и плутоний, хотя раньше казалось, что и так они окислены до предела.
И вот что интересно. Еще до наших опытов темно-зеленые соединения нептуния, образующиеся при окислении, наблюдали западногерманские химики. Но они, видимо, не допускали возможности дальнейшего окисления и объясняли позеленение раствора новой модификацией опять-таки шестивалентного нептуния. Вот и зевнули…
Это очень важно, чтобы идея шла впереди наблюдения. Если бы не наши дискуссии о теориях Сиборга, Гайсинского, Григоровича, если бы не размышления о периодической системе в приложении к тем элементам, которыми мы занимаемся, то вполне вероятно, что и мы, получив неожиданный результат, объяснили бы его новой разновидностью известного…
И еще немного — о контрольных опытах, о подходе к собственным результатам. Я считаю, что любой ученый, а химик в первую очередь, должен сам быть строжайшим критиком своих результатов.
Н.Н. Крот: Это верно. Чтобы выступать с проблемными мнениями, нужно самим быть очень уверенными. Строгость подхода к собственным результатам — необходимое условие настоящего успеха. Через два месяца после первого опыта мы уже держали в руках твердое соединение семивалентного нептуния и только после этого решились выпустить из лаборатории первую публикацию.
Вопрос: А что было дальше?
Н.Н. Крот: Опять опыты, в которых приняли участие многие сотрудники нашей лаборатории. Испытали разные окислители, разные методы окисления, включая электрохимические и радиационные; получали разные соединения. Сейчас изучено уже около десятка твердых веществ, в которых нептуний и плутоний проявляют валентность 7+. И эту валентность нельзя считать необычной для них, особенно для нептуния, который, как оказалось, может быть семивалентным и в кислой среде.
Многие соединения нептуния(VII) весьма устойчивы. Для всех трансурановых элементов характерно образование прочной связи с двумя атомами кислорода. Семивалентные нептуний и плутоний во всех полученных соединениях тоже связаны с кислородом. Единственная форма существования нептуния (VII) и плутония(VII) в щелочных растворах — это анион состава MeO53-.
А.Д. Гельман: Наши опыты потом повторяли в разных лабораториях, в разных странах. Результаты неизменно подтверждались. Академик В.И. Спицын был в Америке на конгрессе и оттуда прислал мне такую открытку: «Дорогая Анна Дмитриевна! Ваша работа с Николаем Николаевичем проверена в Аргоннской национальной лаборатории и получила полное подтверждение. Ее приняли здесь с энтузиазмом…»
Вопрос: А могут ли, по вашему мнению, быть еще и другие, неизвестные пока валентные состояния трансурановых элементов? Могут ли быть, скажем, восьмивалентные нептуний и плутоний?
Н.Н. Крот: Нептуний определенно нет: электронов не хватит. А плутоний, в принципе, может. Но это еще нужно доказать…
А.Д. Гельман: На опыте!
В том же 1970 г. авторы этой работы опубликовали еще одно любопытное сообщение. Одним из окислителей, пригодных для перевода нептуния в семивалентное состояние, оказался… семивалентный плутонии.
Плутоний
С элементом № 94 связаны очень большие надежды и очень большие опасения человечества. В наши дни это один из самых важных, стратегически важных, элементов. Это самый дорогой из технически важных металлов — он намного дороже серебра, золота и платины. Он поистине драгоценен.
Предыстория и история
…Вначале были протоны — галактический водород. В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента № 94.
Но все эти изотопы — гипотетические и реальные — не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 — 81 млн. лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.
В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, — элемент № 93. Этот элемент назвали нептунием, а 94-й — плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.
Элементы № 92 и 93 названы в честь далеких планет солнечной системы — Урана и Нептуна, но и Нептун в солнечной системе — не последний, еще дальше пролегает орбита Плутона — планеты, о которой до сих пор почти ничего не известно… Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium — neptunium — plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония — почти такой же отрезок времени разделял открытия Урана — планеты и урана — элемента.
Загадки для шифровальщиков
Первый изотоп элемента № 94 — плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный — генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».