Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее читать книгу онлайн
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Многочисленные сложности ториевого производства усугубляются необходимостью надежной радиационной защиты.
Торий и наука о радиоактивности
Радиоактивность — важнейшее свойство тория. Но первые же глубокие исследования этого явления на новом объекте дали неожиданные результаты. Радиоактивность тория отличалась странным непостоянством: хлопнет ли дверь, чихнет или закурит экспериментатор — интенсивность излучения меняется. Первыми натолкнулись на эту странность, начав работу с торием, два молодых профессора Мак-Гиллского университета в Монреале — Э. Резерфорд и Р.Б. Оуэнс. Они очень удивились, когда после тщательного проветривания лаборатории радиоактивность тория стала вовсе незаметной! Радиоактивность зависит от движения воздуха?!
Естественно было предположить, что активность «сдувается» с тория потому, что в процессе распада образуется радиоактивный газообразный продукт. Он был обнаружен, изучен и назван эманацией тория, или тороном. Сейчас это название употребляется сравнительно редко: торон больше известен как изотоп радон-220.
Вскоре, в 1902 г., в той же монреальской Мак-Гиллской лаборатории Ф. Содди выделил из раствора торцевой соли еще один новый радиоактивный продукт — торий-Х. Toрий-Х обнаруживали везде, где присутствовал торий, но после отделения от тория интенсивность его излучения быстро падала. Менее чем за четыре дня она уменьшилась вдвое и продолжала падать в полном соответствии с геометрической прогрессией! Так в физику пришло понятие о периоде полураспада. Позже было установлено, что торий-Х представляет собой сравнительно, короткоживущий изотоп радий-224.
Со временем были обнаружены достаточно многочисленные продукты алхимических превращений тория. Резерфорд изучил их, установил генетические связи. На основе этих исследований им был сформулирован закон радиоактивных превращений, а в мае 1903 г. ученый предложил схему последовательных распадов естественного радиоактивного ряда тория.
Торий оказался родоначальником довольно большого семейства. «Родоначальник», «семейство» — эти слова приведены здесь не ради образа, а как общепринятые научные термины. В своем семействе торий можно было бы назвать еще и патриархом: он отличается наибольшим долголетием в этом ряду. Период полураспада тория-232 (а практически весь природный торий — это изотоп 232Th) 13,9 млрд. лет. Век всех «отпрысков знатного рода» несравненно короче: самый долгоживущий из них — мезоторий-I (радий-228) имеет период полураспада 6,7 года. Большинство же изотопов торцевого ряда «живет» всего дни, часы, минуты, секунды, а иногда и миллисекунды. Конечный продукт распада тория-232 — свинец, как и у урана. Но «урановый» свинец и «ториевый» свинец не совсем одно и то же. Торий в конце концов превращается в свинец-208, а уран-238 — в свинец-206.
Постоянство скорости распада и совместное присутствие в минералах материнских и дочерних изотопов (в определенном радиоактивном равновесии) позволили еще в 1904 г. установить, что с их помощью можно измерять геологический возраст. Первым эту идею высказал один из светлейших умов своего времени — Пьер Кюри.
Торий радиоактивный
Предыдущую часть нашего рассказа можно было бы несколько высокопарно, но в общем точно назвать «служение радиоактивного тория чистой науке». Но науке положено поворачиваться лицом к практике. Первая попытка использовать на практике радиоактивность тория была предпринята в 1913 г. Его «дитя» — мезоторий стали применять в производстве светящихся красок, которыми наносили цифры на циферблаты часов. Спустя несколько лет обнаружили, что со временем циферблаты перестают светиться (причину мы знаем: относительно малое время жизни мезотория). Но не это стало причиной спешного изгнания мезотория из лакокрасочного производства: в 20-х годах заметно увеличилась смертность среди работниц, выписывавших кисточками цифры на циферблатах. Патологоанатомы констатировали накопление мезотория в костях погибших. Выяснилось, что, как многие рисовальщики, работницы заостряли концы кисточек губами. При этом они проглатывали за год до 1,75 г краски и с ней почти 10 мг мезотория…
Но мезоторий все-таки не сам торий. А как обстоит дело с ним? Как ни странно, поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке — кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт — нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория…
Выходит, что «вкушать» торий не столь опасно, как дорого: упомянутое количество элемента № 90 стоит около четырех долларов. И все же есть торий не следует даже очень богатым людям. Чрезвычайно опасно попадание тория в кровь. В этом, к сожалению, люди убедились не сразу.
В 20–30-х годах при заболеваниях печени и селезенки для диагностических целей применяли препарат «торотраст», включавший окись тория. Врачи, уверенные в нетоксичности ториевых препаратов, прописывали торотраст тысячам пациентов. И тут начались неприятности. Несколько человек погибли от заболевания кроветворной системы, у некоторых возникли специфические опухоли.
Оказалось, что, попадая в кровь в результате инъекций, торий осаждает протеин и тем способствует закупорке капилляров. Отлагаясь в костях близ кроветворных тканей, природный торий-232 становится источником гораздо более опасных для организма изотопов — мезотория, тория-228, торона… Естественно, что торотраст был спешно изъят из употребления.
Как видим, первые попытки применить радиоактивный торий на практике закончились неудачно. Элементом первостепенной важности, стратегическим металлом торий стал лишь после второй мировой войны.
Как и всякий четно-четный изотоп (четное число протонов и нейтронов), торий-232 не способен делиться тепловыми нейтронами и быть ядерным горючим. Но под действием тех же нейтронов с торием происходит вот что:
А уран-233 — отличное ядерное горючее, поддерживающее цепную реакцию.
Уран-233 имеет некоторые преимущества перед другими видами ядерного горючего: при делении его ядер выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром плутония-239 или урана-235, дает 2,03–2,08 новых нейтронов, а урана-233 — намного больше — 2,37!
Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей, уран-232, — альфа- и гамма-излучатель с периодом полураспада 73,6 года. Тем не менее ториевые ядерные реакторы есть.
Пока расход металлического тория в атомных реакторах намного меньше, чем урана. Его использованию препятствует и то обстоятельство, что торий дороже урана. Уран легче выделить. Некоторые рудные урановые минералы (уранинит, урановая смолка) — это простые окислы урана. У тория таких простых минералов (имеющих серьезное промышленное значение) нет. А попутное выделение из редкоземельных минералов, как мы уже знаем, осложнено сходством тория с элементами семейства лантана.
Тем не менее о ториевой ядерной энергетике следует думать всерьез. Запасы этого элемента только в редкоземельных рудах втрое превышают все мировые запасы урана. Это неминуемо приведет к увеличению роли ториевого ядерного горючего в энергетике будущего.
Соединения тория
Поскольку ранее речь шла почти исключительно о тории и продуктах его распада, здесь мы коротко расскажем о важнейших соединениях элемента № 90. Впрочем, эпитет «важнейшие», видимо, не совсем уместен: только одно соединение элемента № 90 — его двуокись ThO2 имеет самостоятельное применение, остальные же важны лишь для науки и… для производства тория.